
BRAIN: ANATOMICAL CONNECTIVITY FOR EFFECTIVE 

CONNECTIVITY OPTIMIZATION 

René Labounek 

Doctoral Degree Programme (2), FEEC BUT 

E-mail: xlabou01@stud.feec.vutbr.cz  

Supervised by: Jiří Jan 

E-mail: jan@feec.vutbr.cz  

Abstract: The study deals with optimization of effective brain connectivity with prior knowledge 

based on anatomical connectivity. Main attention is dedicated to distributions of anatomical con-

nectivity probabilities over population of examined subjects between regions of interest selected on 

the basis of fMRI activation maps with motor task. Closing part describes how parameters of dis-

tributions should affect effective connectivity estimation.  

Keywords: anatomical and effective connectivity, fMRI, diffusion MRI, dynamic causal model-

ling 

1. INTRODUCTION 

Via MR scanner, it is possible to reconstruct white matter tracts and indirectly measure gray matter 

activity. For white matter tracts reconstruction, there are used gradient-based sequences sensitive at 

water diffusion motion (diffusion MRI, dMRI). Anisotropic water diffusion over 3D space is char-

acteristic for parts of brain where white matter is [1]. Firstly, water diffusion decomposition is es-

timated per each voxel and then the white matter tracts are reconstructed via tractography on de-

composed dMRI data [2]. The system of white matter tracts is called anatomical connectivity. The 

example of anatomical connectivity you can see in Figure 1a. 

Functional magnetic resonance imaging (fMRI) is a method of indirect measuring of brain activity 

in gray matter which evokes hemodynamic changes. The changes are described with hemodynamic 

model [3] where concentration change of paramagnetic deoxy-hemoglobin (deoxy-Hb) figures. 

Deoxy-Hb concentration change increases inhomogeneity of stationary homogeneous magnetic 

field and decreases T2* relaxation time. With repetitive scanning, it is possible to measure temporal 

changes of T2* relaxation time called BOLD signal (blood oxygen level dependence), last state 

value of hemodynamic model [4]. The neuronal activity can be reconstructed with inversion of he-

modynamic model. 
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Figure 1: Anatomical (a) and effective (b) connectivity [5], [6] 



The general linear model approach is most commonly used for founding of activated parts of brain 

[7]. If you have found activated brain areas you can analyze causality between those areas with dy-

namic causal modelling (DCM) which uses hemodynamic model inversion [8]. The DCM output is 

bidirectional matrix of effective connectivity. The example of effective connectivity you can see in 

Figure 1b. 

Because DCM is based on prior-posterior Bayesian estimation approach, Stephan et al. introduced 

a pilot study how the anatomical connectivity informed priors could improve posterior DCM 

knowledge in 2009 [9]. They designed 62 different models where prior variance was influenced by 

probability of anatomical connection and showed that for some parameter settings of variance cal-

culation, the final posterior DCM models has higher log-evidence [10] than for model without ana-

tomical connectivity. But their methodology has several limitations they have not used dMRI and 

fMRI data measured on same subjects and did not use this optimization for fully-connected model 

where tractography-based priors could have greater application. 

For this reason, we tried to replicate their approach for the dMRI-fMRI dataset measured on same 

subjects (11 persons) with motor task during fMRI experiment and used fully-connected model. 

The results showed that some anatomical-connectivity based models has higher log-evidence over 

priors commonly used in 2009 but not over priors used now [11]. Because the standard deviations 

of anatomical connection probabilities between regions of interest (ROIs) were predominantly in 

the same orders as the probability itself we recalculate anatomical connectivity probabilities for 37 

persons and the results are described below. 

2. METHODOLOGY 

2.1. DATA 

Open-access preprocessed dMRI-fMRI dataset from the database humanconnectome.org was used 

[12], [13]. Data are on experimental high level quality because dMRI data were acquired from 270 

gradient directions with 1.25mm isotropic voxels (168x144x111), field of view (FOV) 

210*180mm, multi-shell scanning protocol (b-values: 1000, 2000 and 3000 s/mm2) and fMRI data 

were acquired in spatial-temporal resolution 2mm isotropic voxels (104x90x72) with repetition 

time of scanning TR=720ms, FOV 208x180mm. Motor task during fMRI acquisition was divided 

on 2 independent runs (sessions), each containing 284 fMRI scans (run duration 3 min 34 s). 

2.2. FMRI MOTOR TASK PROTOCOL 

Participants are presented with visual cues that ask them to either tap their left or right fingers, or 

squeeze their left or right toes, or move their tongue to map motor areas. Each block of a movement 

type lasted 12 seconds (10 movements), and is preceded by a 3 second cue. In each of the two runs, 

there are 13 blocks, with 2 of tongue movements, 4 of hand movements (2 right and 2 left), and 4 

of foot movements (2 right and 2 left). In addition, there are 3 15-second fixation blocks per run 

[12], [14]. 

2.3. WATER DIFFUSION DECOMPOSITION 

Water diffusion was decomposed from dMRI data into 3 partial directions per voxel with ball and 

stick model optimized for multi-shell scanning protocol with Rician noise in the data [15] imple-

mented in FSL software library [16]. The outputs of decomposition are inputs for probabilistic trac-

tography [2]. 

2.4. FMRI-BASED PROBABILISTIC TRACTOGRAPHY 

Based on general linear model approach implemented in software Statistical Parametric Mapping 8 

(SPM8, Welcome Trust Centre, London) and 2nd level group statistic on data from 37 subjects, 6 

ROIs where the supra-thresholded activity was observable during left (L) or right (R) hand move-



ment have been selected. It was: 2 primary motor cortices L Brodman Area 3 (LBA3) and RBA4; 2 

secondary motor cortices LBA6 (or LSMA – supplementary motor area) and RBA6 (or RSMA); 

and 2 activated parts of cerebellum L Culmen and R Culmen. The results were in standardized 

MNI space (Montreal Neurological Institute coordinates). 

Nearby those activated clusters in white matter, masks (seeds and targets) for probabilistic tractog-

raphy were manually created in MNI space and then transformed with FSL software [16] into dif-

fusion space of each subject. 

Masks in diffusion space of each subject were used as seeds and targets for all combinations of 

anatomical connections between ROIs (6 ROIs  15 combinations of direct anatomical connec-

tions). For each voxel in a seed mask, 20 000 tracks were traced. In target, there was calculated 

how many tracks got into target, when it happened the tracking of this track was ended. For each 

anatomical connection, double tracking was calculated, firstly one mask was a seed and second one 

a target and secondly it was conversely. The probability of each direct anatomical connection was 

then calculated according to equation (1) because dMRI data are unidirectional. 

𝑃𝐴𝐵 =
𝑇𝐴 + 𝑇𝐵
𝑆𝐴 + 𝑆𝐵

 (1) 

PAB is a probability of anatomical connection between ROIs A and B. TA and TB are number of trac-

es which got into target A or B. SA and SB are number of traces traced from seed A or B. 

The probabilities were then transformed on relative probabilities (2) as in Stephan et al. study [9]. 

 

Figure 2: Distributions of relative probability of anatomical connection between ROIs; x-axis is 

relative probability of anatomical connection, y-axis is number of subject with probability on a giv-

en interval; right part is for 1st level tracking, left part for 2nd level tracking; the red curves show es-

timated gamma distributions. 



𝛿𝑃𝐴𝐵𝑖 =
𝑃𝐴𝐵𝑖

∑ 𝑃𝐴𝐵𝑖
15
𝑖=1

 (2) 

Because the precision of tractography is low nearby gray matter, 2nd level tractography was esti-

mated. Seed for tracking between A and B was placed into location where at least 5% of traces 

went through from seeds A or B during previous tractographies. The final probability was then cal-

culated as probability of two independent probabilities according to equation 3 and transformed in-

to relative probability according to equation 2. 

𝑃𝐴𝐵 = 𝑃𝐴𝑃𝐵 =
𝑇𝐴𝑇𝐵

𝑆5%
2  (3) 

In this study, the area of interest was if larger subject sample (37 now; 11 before) decreases the or-

ders of probability standard deviations when classical average is used and if the distributions of an-

atomical connectivity probabilities between ROIs are normally distributed or not. This knowledge 

is necessary for precise design of prior information for effective connectivity estimation. 

3. RESULTS 

The orders of standard deviations were not decreased when classical average was used. As you can 

see in Figure 2 all distributions of relative probabilities of anatomical connectivity are not normally 

distributed but gamma distributed for both 1st level and 2nd level tracking. 

When the parameters of gamma distributions were estimated and the averages were replaced with 

mean values of gamma distribution, the orders of variances and standard deviations decreased. It 

shows that the gamma distribution characterizes this data better than the normal distribution. 

2nd level tracking disposes with ,,eliminating” property of some anatomical connections. In left part 

of Figure 2, the probability density functions (PDFs, red curves) whose shape is a part of hyperbole 

indicate that it is the most probable that there is not any direct anatomical connection. 

4. CONCLUSIONS 

The standard deviations were not decreased when average was used because distributions of rela-

tive probabilities of anatomical connection between ROIs are gamma distributed. 

It seems that results of 2nd level tracking are more in line with reality because it eliminated proba-

bility of direct anatomical connection between primary motor cortices and parts of cerebellum on 

almost zero. It means that cerebellum communicates more probably only with secondary motor 

cortices and between themselves. Moreover 1st level tracking disposes with high relative probabil-

ity for anatomical connection between L and R Culmen which is more probably an artifact than real 

situation. The artifact is probably caused by cerebellum shape. 

In next process of effective connectivity optimization: It is possible that mean value of gamma dis-

tribution for determining of prior variance in DCM estimation could be more powerful than aver-

age used before [9], [11]. We will also try to use the ,,eliminating” property. If PDF shape will be a 

hyperbole, the prior knowledge will be that there is not any linkage. It could be able to generate an-

atomical informed prior models of effective connectivity. DCM limitation is that it cannot generate 

the best model but only choose the best one from the set of input models. 
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