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Jiří Chmelík
Doctoral Degree Programme (1), FEEC BUT

E-mail: xchmel10@stud.feec.vutbr.cz

Supervised by: Jiří Jan
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Abstract: In this paper, Bayesian classification with Markov random fields is used for 3D Computed
Tomography (3D CT) lung image segmentation and modified metropolis dynamic is employed as
optimization algorithm. Lung tissue is well separated from the other tissues like a bones, muscles,
surrounding soft tissue and fat. Segmentation is necessary for subsequent lung analysis (size, shape,
lung contour, etc.), and lung blood-vessels, airways (bronchi, bronchioles) segmentation and tumour
studies.
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1 INTRODUCTION

Thresholding is quietly sufficient method used for medical CT image segmentation, which is given
by character of CT images, where specific tissues has nearly equal density. Typical peaks in grayscale
histogram are formed due to this property. Optimal threshold could be placed manually between the
neighbouring peaks of histogram, or some well known statistical methods as Otsu algorithm can be
used. However, some errors (i.e. misclassified voxels) caused by noise and tissue inhomogeneity
are presented in finally segmented image, because only isolated voxels are taken into account. The
knowledge of relations between nearby voxels is much more useful and should be incorporated to
minimize these errors. Markov random fields (MRFs) is method using image statistical models [1].
The simplest model consists label probabilities of isolated voxels. More complex model includes
label probabilities of isolated voxels and neighbourhood dependencies. Image segmentation problem
using MRFs can be expressed as the optimization process with some algorithms. Many of these
are available such as Iterated Condition Modes, Graduated Non-Convexity, Mean Field Annealing,
Simulated Annealing, Controlled Random Search, etc. Three heuristics are proposed in [2]; there
are explained Deterministic Pseudo Annealing, Game Strategy Approach and Modified Metropolis
Dynamic. The last one is used in this paper.

2 METHOD

In this paper, the MRF is defined by the Bayesian classification which can be described by statistical
dependences between the connected neighbouring voxels. The MRF energy is defined by the config-
uration of the MRF clique. Clique is intended by voxel group exactly defined by the selected rule.
The simplest clique is represented by just a single voxel. More complex clique can contain any, but
clearly defined, voxel neighbourhood. The degree of similarity of estimated label to its neighbours is
determined by the MRF constrain [2, 3]. The best distribution of labels which fulfils MRF constrain
is searched. MRF energy and information based on an observation of the occurrence of labels is
combined by Bayesian model. Label of each voxel is depending on the image intensity on the corre-
sponding voxel coordinates and also on the voxel neighbourhood. These two energies are combined
to a single merit function and segmentation is solved as an optimization problem. It means, maximum
(minimum) of merit function is searched by maximizing (minimizing) both energies.



Bayesian probability of labels (Equation 1) is described by:

P(L/Y ) =
P(Y/L)P(L)

P(Y )
, (1)

where L is label, Y denotes image intensity and P(Y ) is normalization function independent on la-
belling. P(Y/L) represents energy based on label probability depending on image voxel intensity.
P(L) is clique potential defined by clique order (Equation 2) which corresponds to Markov random
field energy.

P(L) = e−
1
T ∑VcL = e−

1
T ∑βγ(LSi ,LS j ) γ(LSi ,LS j) =

{
−1 if LSi = LS j

+1 if LSi 6= LS j ,
(2)

where VcL is a clique potential, T is a temperature (prevents jamming in local extrema), β denotes
homogeneity parameter (higher value means higher homogeneity of regions), γ is potential of single
clique and LS are neighbouring voxels. Gaussian distribution is used to model a prior label probability
(energy) (Equation 3). This function is defined for each label class Li with standard deviation σLi and
mean value µLi which are obtained from image histogram by curve fitting.

P(yi/Li) =
1√

2πσLi

e

−(yi−µLi
)2

2σ2
Li (3)

After that, the optimization function (Equation 4) is created:

L = arg max(
1
T

ln P(Y/L)+ ln P(L)), (4)

Optimization is performed by Modified Metropolis Dynamic (MMD) algorithm which use random
generation of new labels for each voxel and the label acceptance process is defined deterministically
by probabilistic model described above. Optimization process can be rewritten as local merit function
maximization (Equation 5) for each voxel Si which is solved in an iteration manner:

εi(L) =
1
T

(
ln
√

2πσLi +
(yi−µLi)

2

2σ2
Li

+∑βγ(LSi ,LS j)

)
, (5)

Whole MMD algorithm can thus be described [4, 5]:

1. MRF is initialized in first iteration step k with initial temperature T and initial random label
configuration L,

2. randomly picked global state L′ which is different from L,

3. local energies ε(L), ε(L′) and their difference ∆ε for each voxel are computed,

4. new state of voxel is accepted, if following condition (Equation 6) is fulfilled:

Lk+1
i =

{
L′i if ∆εi > 0 and α ≥ e

−∆εi
T

Lk
i otherwise,

(6)

where α ∈< 0,1 > is a constant threshold parameter (higher α means higher probability of
label acceptance, it also influence speed of convergence),

5. temperature T is increased and algorithm continues from step 2 or is ended if maximum number
of iterations is reached or number of modified voxel labels is less than a chosen threshold.



3 RESULTS

The method described above is used for lung segmentation in three-dimensional case. The main goal
is labelling the lung tissue to one class and other tissues (surrounding tissues, muscles, fat and bones)
to second class. The lung tissue is reflected on histogram by the first (the smallest) peak from the
left (Figure 1). The other peaks and bottoms on the right of histogram are formed by other soft and
dense tissue. Proper Gaussian curves is used to model a prior label probability for each of these
parts of histogram. Mean values and standard deviations are estimated automatically individually
for each patient image. Label probabilities are defined by Gaussian curves fitted on histogram peaks
using peak detection and least mean square (LMS) algorithm. The example of these probabilities is
shown in Figure 1. Probability, that image voxel is labelled as lung tissue is defined by green curve,
on the other hand, probability of labelling as other tissue is reflected by red curve. Because of the
probabilities are described, the histogram is normalized to < 0,1 > interval.
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Figure 1: Normalized histogram of 3D CT lungs image (green curve - lung tissue probability, red
curve - other tissue probability.)

Peak detection is performed by top-hats morphological operation of given histogram. Top-hats oper-
ation result is defined as a residue after subtraction of the original image and its opening. The values
of image opening are always lower than values of the original image. Due to this, the result is always
greater or equal to zero. It means, after top-hats operation only thin and tall peaks are left from the
original [6]. Mean value of lung tissue is defined by position of maxima of first greater peak given
by top-hats result. Mean value of the other tissue is formed by centre between lung tissue mean value
and the last value of histogram. Standard deviation (STD) is obtained by LMS algorithm. First, vec-
tor of STDs is generated according to the histogram range. Further, this vector is iteratively browsed
and the Gaussian curve is created with fixed mean value. Then, the difference between generated
Gaussian curve and corresponding peak is measured. Finally, optimal STD is picked by minima of
LMS function. Acquired curves are applied on original image; the lemma (Equation 3) is defined by
a so ’transformed’ images.

The lemma (Equation 2) is defined by cliques in MRF. For example, if the first order clique is ac-
counted and 4-connected neighbourhood is taken, the result is defined by sum of these members.
When all four neighbouring voxels are different from the computed voxel and the β parameter is
equal to 1, the clique potential is -4, and vice versa, if all voxels has the same value, the clique po-
tential is +4, etc. Precise tuning of MRF parameters is a difficult problem. For this reason, the MRF
parameters are tuned meanwhile experimentally. Used values are listed in Table 1. The total MRF
energy is defined by this scheme.



Parameter Value
α 0.73
β 1.7

Tinit 0.001
Tmax 1.2
Titer 1.1

clique order 1
neighbourhood 26

iterations 30

Table 1: Tuned MRF parameters
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Figure 2: Result images (green (gray) - orginal image, magenta - segmentation result): patient 1
(original) (a), patient 2 (original) (b), patient 3 (original) (c), patient 1 (fuse) (d), patient 2 (fuse) (e),
patient 3 (fuse) (f), patient 3 - 3D lungs rendered 1 (g), 3D lungs render 2 (h), 3D lungs render 3 (i).



Optimal segmentation output is determined by label distribution, after maximal energy (maxima of
merit function (Equation 5)) is found. Segmentation results obtained by this process are shown in
the transversal plain in the three different patient images (Figure 2). Original data are highlighted
by green (gray) colour and segmented regions by magenta (blue) colour. 3D rendered images of
segmented lungs are presented. Size of tested images is 512x512x141 for patient 1 (Figure 2(a)),
512x512x169 for patient 2 (Figure 2(b)) and 512x512x417 for patient 3 (Figure 2(c)).

4 CONCLUSION

In this paper, the 3D CT lung segmentation method was proposed. Bayesian classification utiliz-
ing MRF was used to solve segmentation problem. Statistical model of Bayesian classification was
formed by histogram fitting using Gaussian probability distribution. MRF was defined by clique
potentials of first order cliques with 26-connected neighbourhood. The other MRF parameters was
experimentally tuned. MMD heuristic was used to optimization for its parallel computation possibil-
ity.

Proposed method was well used to lung tissue segmentation. Results are shown in Section 3. Main
advantage of this approach is minimization of errors caused by noise and image inhomogeneity. Rel-
atively simple way to parallel computing and usage of multi-dimensional convolution are the another
advantages of these method.

Future work will be aimed to segmentation of other tissues during single iteration process (more label
classes will be used), especially lung blood-vessel and airways will be segmented. The further step
will be upgrade to bones and soft tissue segmentation and application on another body parts such as
brain and abdominal.
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