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Abstract: In this article we propose an interaction of the following areas of mathematics: formal
concept analysis and partial metrics. Rudolf Wille in 1982 introduced a formal concept analysis
(FCA) as an attempt of restructuring lattice theory [2]. FCA works with data and data is described
with a binary relation between an object set and an attribute set. The attribute set, the object set and the
relation between them form a triple called a formal context. The formal context forms a mathematical
structure that is a source of some information (obvious and hidden). Knowledge could be extracted
from formal contexts in many different ways; thus, many different topologies could be defined on a
formal context. Because information stored in a formal context mostly is not total information about
objects, we could describe a formal context with a partial metric. A partial metric was introduced by
Steve Matthews in 1992. The main idea was to generalize metric by “dropping” the first axiom of
the metric (zero self-distance). This approach could be used in Computer Science, because at every
particular moment of time we know (could calculate) only a part of information about the object. And
known part of information at every particular moment of time is finite and could be represented as a
finite formal context.
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INTRODUCTION

Practical applications of formal context analysis were found in different fields including data mining,
text mining, machine learning, hierarchical organization of web search results, software development
and etc. On the other hand, general topology studies properties of topological spaces. An arbitrary
topological space for an arbitrary formal context we can construct in the next way. An arbitrary topo-
logical space (X,T) we can interpret as a formal context (X, T, €) with the object set X, the attribute
set T and the incidence relation €. Many other, more advanced interpretations for a topological space
can be found in the literature. On the contrary, from an arbitrary formal context we can construct in
natural way several different topologies with a specific properties. How could we compare objects?
How could we compare information about object in different moments of time? How is it possible to
measure stored information in objects at one moment of time? Because information stored in formal
context mostly isn’t a total information about objects we could describe a formal context with a par-
tial metric. The main idea was to generalize metric by “dropping” the first axiom of the metric (zero
self-distance). Zero self-distance axiom was replaced by non-negative self distance axiom. What
does it mean? A zero-self distance means that all information about this object/structure is already
known. But positive self-distance means that we don’t know all the details about the object. The
smaller self-distance is the more defined object is. As a simple example we could take a map. If we
know were object is situated we could find that point. But if we don’t have enough information we
could only find an area where the point is situated. So, from this point of view that point is totally
defined object and area is a partial defined object. This approach could be used in Computer Science,
because at every particular moment of time we know(could calculate) only a part of information about



the object. Also other mathematical structures could be represented as a formal context

BASIC DEFINITIONS

Definition 1 A c-algebra on a set X is a collection X of subsets of a set X that contains 0 and X, and
is closed under complements, countable unions, and countable intersections.

Definition 2 A measure is a countably additive, non-negative, extended real-valued function defined
on a G-algebra.

Definition 3 A function p : X x X — R is a partial metric if

(p1) Vx,y€ X p(x,y) = p(x,x)

(p2) Vx,y€X p(x,y)=p(»x)

(p3) Vx,y,z€X  p(x,2) < plx,y) +p(,2) = p(»)
(p4) Vx,y€X, x=y <& pxy)=plxx)=p>y)

Definition 4 A formal context is a triple (X,A,t) where X, A are sets and -C X X A is a binary
relation between them.

In a formal concept analysis, the elements of X are called objects and the elements of A are called
attributes of the context (X,A,F). The binary relation |- is called the incidence relation. We say x has
(the attribute) a or x satisfies a.

Definition 5 (formal concept, extent, intent) Let (X ,A, ) be a formal context, P C X, F C A. We put
P' ={ala€ A,xt aforeveryx € P} and F' = {x|x € X,x aforevery a € F}. Note: If P = {p}
is a singleton, we simply write p' = P'. Similarly we write f' = F’ for F = {f}. The pair (P,F) is
called a formal concept of the context (X,A,F) if P' = F and F' = P. The mappings ' : 2X — 24 and
" 24 — 2% we would call the derivation operators. P is called the extent and F the intent of the
concept (P,F).

Now we will define the second derivation operator for a context (X,A,F) (by a composition of the
first derivation operators):

(1) Map " :2X — 2X thatforP€ X , P+ P" ,
(2) Map” :24 — 24 thatfor F €A, F — F" .

Definition 6 A context (X,A,b) is called row-clarified if for each g,h € X g = I implies g = h,
column-clarified if for each m,n € A m' = n' implies n = m, clarified if it is column- and row-clarified.

Lemma 1 Let (X,A,l) be a formal context, T be its left topology on X, < is a preorder of special-
ization on X equipped with topology T. The following statements for arbitrary elements x,y € X are
equivalent: (1) x <y, (4) yy Cx,

(2) xecl{y}, (5) X" <y,

(3) xey",



For other definitions and results we refer to [2].

On the formal context it is possible to generate many different topologies. For example we could
generate topologies on the object set, on the attribute set, on the set of all concepts, on the set of
extents, on the set on intents. Here we are interested only in one type of the topologies, that could be
generated on the object set and attribute set. That topologies behave in the same way, and that why
we would pay attention only for one of them. All results could be simply retranslated to the other
topology.

Definition 7 (left and right topologies) Let (X,A,t) be a formal context. The topology T on X,
generated by its closed subbase {d'|a € A} is called the left topology on (X,A,\). Similarly, the right
topology on (X,A,l) is the topology on A generated by the family {x'|x € X} used as its subbase for
the closed sets.

The topological closure operator induced by this topology we will denote by c/. All closed sets in the
left topology T denote as C.

Definition 8 A preorder of specialization on a topological space (X ,t) is the binary relation < sat-
isfying the condition x <y < x € cl{y}. We can rewrite this formula as cl{y} =|< {y}.

Other definitions and results the reader could find in the [4].

MAIN RESULTS

Let u be a finite counting measure. A Finite counting measure is an intuitive way to put a measure on
any finite set. A measure of a set is taken to be a number of its elements: u(A) = |A|.

Lemma 2 Let’s take an arbitrary finite set A. Then let’s define a finite counting measure u on this set.
A function p : 24 x 24 — R* constructed as p(x,y) = u(xUy), where x,y C A is a partial metric on
the set 24 .

Proof. We need to check all axioms of a partial metric.

(1) Notice that the measure u is a monotonic function, so xNy C y implies u(y) > u(xNy). Using
this fact we can deduce p(x,y) = u(xUy) = u(x) +u(y) — u(xNy) > u(x) = p(x,x).

(2) Axiom (p2) is clear.

(3) The idea is to divide all sets into disjoint sets. Let’s calculate p(x,z) — [p(x,y) + p(y,2) —
P,y = pxUz) = [u(xUy) +u(yUz) —u(y)] = u(x) +p(z) —p(xNz) = [ux) +uly) —pxn
Y)+u(y) +pz) —p(yNz) —u(y)] = —u(xNz) —p(y) +p(xNy) +p(yNz) = —u(xNzny) —p((xN
2)\y) = [u((yNx) Nz) +u((yNx)\z) +u((yN2)\x) +u((\x)\2)] +u((xNy) Nz) +p((xNy)\z) +

p((yNz)Nx) +u((yNz)\x) = —p((xNz)\y) —p((¥\*)\z)]. So we have p(x,z) — [p(x,y) +

p? ; g ;] —u((xNz) —y) —u((y —x) —z)] <0 and it means that p(x,z) < p(x,y) +

p(y,z

(4) for a finite case it is obvious (but for infinite sets it doesn’t hold).

Lemma 3 Let’s take a finite row-clarified formal context (X,A,l). Given a finite counting measure
u:X — R on the finite set A (where ¥ is a G-algebra on A), define a function p: X x X — R™
p(x,y) =p(x'Uy’),  wherex,y €X.

Then p is a partial metric on X.



Proof. Again we need to check all axioms of a partial metric. Doing as in previous Lemma 2 we can
easily check axioms (p1), (p2),(p3).

For (p4) we will prove first that for all x,y € X, x =y implies p(x,y) = p(x,x) = p(y,y). It is
obvious(from the definition of the derivation operators on a formal context) that x = y implies x' =y’
and then X' =y = x'Uy. Then u(x') = u(y') = u(x’ Uy'). Thus p(x,y) = p(x,x) = p(y,y).

The most interesting part is to prove that for all x,y,€ X  p(x,y) = p(x,x) = p(y,y) implies x = y.
From p(x,y) = p(x,x) = p(y,y) we can obtain u(x') = u(y') = u(x'Uy’). Thus u(x"\y') = u(y'\x') = 0.
Then it implies X' C y' since u is a finite counting measure. And similarly y C x’. Thus X' =y’
And finally x = y simply because the formal context (X,A,F) is row-clarified. Thus for all x,y, €
X plxy)=plx)=ply)=x=y.

In the article [1] Matthews introduce partial metrics and topologies defined on it. For readers comfort
we remind here the following definition and theorem.

Definition 9 For each partial metric p: U?> — R, < U 2 is the binary relation such that,

Vx,yeU,x <,y < p(x,x) = p(x,y).

The topology T[<,| arises from this binary relation. It is a topology of all upwardly closed sets
1[<,] ={SCU|forallxe S,x <, y=yec S}

Theorem 1 For each partial metric p, <, is a partial ordering.

Lemma 4 Let take a row-clarified context (X,A,F), where A is a finite set. Let’s denote as u a
counting finite measure on the set A. Let p be a partial metric on X generated by counting finite
measure pon A. Then < ,==, where = is a specialisating preorder for a left topology generated on
the context (X,A,l).

Proof. Suppose that x <, y, then by the definition of the binary relation <, we have p(x,x) = p(x,y).
The partial metric p is generated by the counting finite measure u, hence u(x’) = u(x’ Uy’). Then
u(x’) = u(xX)+u(y) —u(x’Ny’) and then u(x'Ny’) = u(y’). Now we divide the set y’ into two disjoint
sets y' = (y/ N’ ) U (y/\«). Then u(y') = u(y"\') +u(x’Ny’') and it immediately follows u(y"\x’) = 0.
Because u is a counting finite measure then y' C x/. And by the Lemma 1 we have x < y.

Now let’s suppose that x < y. By the Lemma 1 this is equivalent to y’ C x’. It is obvious that y"\x' = 0.
Then by the property of measure u(y"\x') = 0. From the y’ = (y/\x') U (¥’ Ny’) by the definition of
the measure we obtain u(y') = u(y'\x') +u(x’Ny’). Hence u(y’) = u(x’ Ny'). By adding a u(x’) to the
every side of equation we have u(x') +u(y') = u(x') +u(x'Ny’). Thus u(x') +u(y') —u(x' Ny’") = u(x').
Then u(x") = u(x’Uy’). Then we obtain p(x,x) = p(x,y). And x <, y follows by he definition of <,
binary relation.

It is necessary to mention, if we take the same subsets (x = y), than a partial metric could be calculated
as p(x,x) = u(xUx) = u(x).

As it was stated in [1] the set of all open balls form an open base for some topology denoted as t[p].
And this topology is T topology.

Definition 10 An open ball for a partial metric p : U> — R is a set of the form BE(x) = {y €
Ulp(x,y) <&} foreache >0andx € U.



The topologies T[< ], T[p] are the same if for every x € X there exists € > 0 that Bf = {p(x,y) < €}.
That was proved by S. Matthews in [1].

Theorem 2 Let take a row-clarified context (X,A,b), where A is a finite set. Let p be a partial metric
on X generated by counting finite measure u on A. Then T[< ] = 1[p].

Proof. Let’s take an arbitrary x € X. Then as € we could take a p(x,x) +0.5. Then open ball could
be represented as BY = {y|ly € X, p(x,y) < €} = {y|ly € X, p(x,y) < p(x,x) +0.5}. But yu is a finite
counting measure, and it implies that the differences between measure of the sets could be only
integers. Using that fact and axiom (p2) we get BY = {y|y € X, p(x,y) = p(x,x)}. Thus 1[<,] = 1[p].

That means, that the left topology generated by the finite row-clarified context coincide with the
topology generated by the open balls with respect to the partial metric p.

And now we have a good tool for combining partial metrics and left topology generated by a formal
context. Let’s sum up. Let’s take a finite context (X,A,F). In a native way we can introduce a partial
metric on the set X. We can easily see that information that is carried in partial-metric function is
enough.

Corollary 1 Let’s take a row-clarified context (X,A,F), where A is a finite set. Then the specializa-
tion preorder = for a left topology is a partial order.

Proof. Immediately follows from the previous lemma and theorem 1.

Now we have a possibility for constructing a partial order on set, with help of some additional finite
set with defined counting finite measure.

4 CONCLUSION

In this article we proposed a relationship between partial metrics and finite row-clarified contexts.
The left topology defined in [4] on a finite row clarified contexts coincide with the open ball topology
defined with help of partial metrics in [1]. And it follows, that left topology in this particular case has
nice properties described in that article. It is obvious, that formal context is a general mathematical
structure and we could represent other mathematical structures as contexts. Such representation we
could easy implement in computer. And that why it is a great advantage.
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