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Abstract: Completing missing or distorted samples is a typical task of audio restoration engineers.
State-of-the-art interpolation techniques utilized for this purpose are compromised today by novel
methods based on sparse representations of signals. Preliminary results of sparse solutions are
promising. In this paper, the topic of sparse solutions of underdetermined linear systems is de-
scribed in a theoretical way. Further, the comparison of interpolation and sparse solutions based
on `1-minimization is presented.
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1 INTRODUCTION

In many cases signal transmission is affected by errors in both analogue or digital ways. Typical
example in sound signal processing is a distortion or signal loss on archive audio recordings, e.g. vax
cylinders, magnetic tapes, gramophone records [1]. Another example of such a problem is packet loss
in internet telephony (VoIP).

To solve this problem, various techniques have been utilized in the past. Interpolation techniques
based on autoregressive (AR) modelling were developed [2] followed by wavelet transform [3] or
neural network based methods [4].

Currently, signal processing methods referred as the Sparse Representations are increasingly popular
for solving underdetermined linear equation systems. Solving the problem of missing samples in
sound signal processing is called the Audio Inpainting [5].

This paper shows that sparse representations are able to improve the missing signal restoration prob-
lem in case of objective reconstruction assessment in contrast to state-of-the-art interpolation methods.
Applying the structured sparsity in time-frequency (TF) domain is presented and current results are
provided.

2 SPARSE SIGNAL REPRESENTATIONS

We have a set of vectors {dj}, j = 0, 1, . . . ,KD called atoms. These atoms form together a non-
orthogonal system called a frame. This frame has a meaning of a dictionary

D ∈ RN×KD , (1)

where N is a length of single atom and KD is a number of atoms. The condition N ≤ KD must be
preserved. Each atom is one ’word’ from a dictionary. With this dictionary and appropriate sequence
of coefficients xi ∈ RKD , the observed signal yi is approximated

ŷi ≈ Dxi (2)



for each segment i = {0, 1, . . . ,M}. Sparsity means, that the vector xi has only a few nonzero
coefficients compared to N .

Sparse vector xi from the original signal is obtained by solving an optimization problem. Generally
there are two groups of solvers: Greedy algorithms and algorithms based on `1-minimization [6].
Audio signals are typically sparse in TF domain, therefore can be approximated by a few coefficients
using proper dictionary. This was the main motivation for existing and future research in this field.

3 AUDIO INPAINTING

Audio Inpainting is based on approximating missing or distorted information with atoms {dj} from
the dictionary. At the begining the signal is segmented into segments of defined length same as the
atom lengthN and appropriate overlap. For those segments where wrong samples are detected (either
specified a-priori by the user or some detection method), individual inpainting is proceeded. Wrong
samples are identified in a diagonal matrix Mm consisting of zeros and ones. The missing samples
(meaning rows in the dictionary) are represented as ones and reliable samples as zeros. Matrix Mr

represents the reliable samples matrix with values in opposite to the Mm matrix.

Reliable samples can be obtained by
yr = MrDx, (3)

while recovering of unknown samples ŷm is performed by estimating x̂ as a sparse vector

ŷm = MmDx̂. (4)

4 `1-MINIMIZATION

Natural solution of counting a number of non-zero coefficients is provided by `0 norm. However, `0
norm is not a convex function, thus it is not convenient to use any of available convex optimization
algorithms. While `p norms are convex for p ≥ 1, using the closest convex norm `1 is a natural
attempt. In the case of noisy data, problem known as LASSO is defined as

min
x
‖x‖1 subject to ‖Dx− y‖2 ≤ δ, (5)

where a correct solution error δ is permitted. In most cases, solutions of this problem using `0 and `1
norm are equal [6]. Problem (5) can be formulated in a general convex sense as unconstrained version

ŷ = D argmin
x∈CN

1

2
‖y− Dx‖22 + λ‖x‖p,p (6)

where λ‖x‖p,p is a regularization term which penalizes certain types of solutions and λ is a weighting
coffecient controlling strength of the term. Different kind of sparsity or structure natural for real
signals can be enforced choosing proper penalty. The minimizer of the convex functional (6) can be
computed by proximal algorithms. Currently, the most efficient proximal algorithm is FISTA (Fast
Iterative Shrinkage/Thresholding Algorithm) [7].

5 STRUCTURED SPARSITY

Every typical spectrogram of a musical signal is naturally structured. Considering this, algorithm for
sparse signal modelling incorporating information about a structure (evaluation of the coefficient on
the strength of its neighborhood) in an analysis stage of processing would be an advantage compared
to the regular sparse modelling where coefficients are treated independently. While `1-norm performs



individually on each coefficient, mixed norms can substitute this norm to perform independently on
a group of coefficients. Keeping or discarding particular coefficient under consideration is decided
up to certain neighborhood of the coefficient. Further improvement called the Social Sparsity means
weighting of the coefficients in the neighborhood [8].

The neighborhood should be chosen according to the specific signal class under investigation, e.g. fo-
cused on tonal/transient part. According to this, structured shrinkage operators representing a neigh-
borhood system have to be defined. The convex optimization problem for Audio Inpainting with
mixed norms is reformulated as

ŷm = MmD · argmin
x∈CN

(
1

2
‖Mry−MrDx‖22 + λ‖x‖p,q

)
(7)

where p represents a within-group penalty na q is across-group penalty.

Due to the non-stationariry of sound signals, windowing with overlapping and weighting is incorpo-
rated. After running some experiments, following neigborhoods were evaluated as the most promis-
ing:

1. Windowed-Group-Lasso: Keeping a coefficient if the energy of its neighborhood is large enough
(positive correlation). p = 2, q = 1,

2. Persistent-Elitist-Lasso: Coefficient will be kept if its neighborhood is energetic enough com-
pared to the others. p = 1, q = 2 and one more index for sophisticated treatment are utilized.

6 EXPERIMENTS

Illustration of structured sparsity algorithms performance applied to solving an Audio Inpainting
problem is provided. Our experiments were performed using Matlab BWItoolbox1 developed by Brno
University of Technology and University of Vienna in a bilateral project, core engine of Structured
Sparsity algorithms2 is provided by University of Vienna.

First, different neighborhoods representing mixed norms were compared. Some of them provided
unusable results (e.g. Persistent-Group-Lasso). Among several possibilities, two most promising
results (presented in last section) are presented here in Fig. 1. Experiments were performed on a
musical file music_08 from the BWItoolbox with sampling frequency fs = 16 kHz, the signal gap
beginning sample number 9528 with duration of 164 samples (10.3ms).

1http://www.stud.feec.vutbr.cz/ xmachv00/bwitoolbox/bwitoolbox_v01.zip
2http://homepage.univie.ac.at/monika.doerfler/StrucAudioToolboxV02.rar
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Figure 1: Comparison of Structured Sparsity methods: Persistent-Elitist-Lasso, Lasso (without per-
sistence) and Windowed-Group-Lasso.



Table 1: Best parameters for each of structured sparsity methods

Method Atom length Time shift Neighb. size Neighb. size Weighting center
(samples) (samples) (coefficients) (ms) (coefficients)

PEL 4096 1024 5 512 3
WGL 1024 256 7 160 4

The parameters of structured sparsity experiments were selected according to complex parameters
testing results for each of the methods (see Table 1), parameter λ = 0.01 and an overcomplete Gabor
dictionary D. Pure Lasso method was performed with a non-persistent (no neighborhood) setup.

Regarding Fig. 1 with inpainting experiments, all of tested methods were succesfully aproximating
the original signal. However, WGL method result produces non-smooth transition at the beginning
and end of the missing gap, which in fact is not perceptually audible.

For comparison, two state-of-the-art algorithms were selected. First one an interpolation method
called Weighted Forward-Backward Interpolation (wFB) presented in [2]. Another method is Or-
thogonal Matching Pursuit, a greedy method solving underdetermined linear systems. Both of them
produce less satisfying results then the novel approach via structured sparsity, see Fig. 2.
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Figure 2: State-of-the-art interpolation methods: Audio Inpainting via Orthogonal Matching Pursuit
and Weighted Forward-Backward Interpolation.

In Table 2 is presented an objective evaluation via SNR. The best result is reached using PEL Struc-
tured Sparsity method followed by pure Lasso algorithm. SNR results present comparison of a single
gap reconstruction. In the sense of human sound perception the most disturbance was added by OMP
algorithm. Comparing other methods, the inpainting of this short segment was almost inaudible.

Table 2: Objective evaluation of Inpanting methods via SNR

Method SNR [dB]
wFB 2.33
OMP –1.31
Lasso 19.50
PEL 20.70
WGL 13.88

7 CONCLUSION

This paper reviews the problem of missing audio signal interpolation and provides a novel approach
for solving this problem using `1-minimization methods. Theoretical aspects like sparsity or inpaint-
ing issues statement were briefly described for basic understanding the problem as whole. Methods



based on `1-minimization outperform other state-of-the-art methods, however, more focus has to be
concentrated on optimization of structed sparsity methods for proving the theoretical advantages of
apriori information about the structure in the spectrogram. Another idea for future work is to perform
complex testing on musical recordings of various genres while trying to fit the algorithm parameters
to specific kinds of music.
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and Františka Kyselková in 1909–1912. Brno: The Institute of Ethnology of the Academy of
Sciences of the Czech Republic, v.v.i., 2012, pp. 165–176.

[2] W. Etter, “Restoration of a discrete-time signal segment by interpolation based on the left-sided
and right-sided autoregressive parameters,” IEEE Transactions on Signal Processing, vol. 44,
no. 5, pp. 1124–1135, 1996.

[3] P. Rajmic and J. Klimek, “Removing crackle from an LP record via wavelet analysis,” in
Proceedings of the 7th international conference on digital audio effects DAFx04, 2004, pp.
100–103. [Online]. Available: http://dafx04.na.infn.it/WebProc/Proc/P_038.pdf

[4] G. Cocchi and A. Uncini, “Subbands audio signal recovering using neural nonlinear prediction,”
in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’01),
vol. 2, 2001, pp. 1289 –1292 vol.2.

[5] A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and M. Plumbley, “Audio Inpainting,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 20, no. 3, pp. 922 –932, March
2012.

[6] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and
Image Processing. Springer, 2010.

[7] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
Problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[8] M. Kowalski, K. Siedenburg, and M. Dörfler, “Social Sparsity! Neighborhood Systems Enrich
Structured Shrinkage Operators,” Signal Processing, IEEE Transactions on, vol. 61, no. 10, pp.
2498–2511, 2013.


