PROTECTING SENSITIVE INFORMATION USING DY NA-
MIC DATA-FLOW ANALYSIS

Pavel Zina
Doctoral Degree Programme (2), FIT BUT
E-mail: xzunap00@stud.fit.vutbr.cz

Supervised by: Petr Hatek

E-mail: hanacek@fit.vutbr.cz

Abstract: Security mechanisms of modern operating systemsnast often overcome by exploi-
ting vulnerabilities or social engineering to hlfgarivileged user accounts. To counter these thre-
ats, this paper introduces a complementary apprtethuses dynamic data-flow analysis to pro-
tect sensitive information contained in memory east of logical memory regions such as files. It
proposes a state-based data-flow model for formhition and verification of security policies. It
also discusses possible implementation and depleyemmplications of such a system in produ-
ction environments.

Keywords: security, security policies, data-flow analysiata loss prevention, operating systems

. INTRODUCTION

Security mechanisms of modern operating systenisirtblude protected processor mode, virtual
memory with separate address spaces for procesdanandataroy access control are time proven
to provide the basic attributes of a secure infoinasystém. These attributes are namely integrity,
accountability and confidentiality. Studies [1,Hgve shown that the major of security threats are
vulnerability exploitation and social engineering tlijack privileged user accounts. When these
threats become incidents, standard OS mechanismstitla(if setup correctly) provide the first
two of the basic attributes, but confidentialityalsvays at stake. At this point we can no longer
prevent the attacker from accessing sensitive nmégion, but we can stop him from spreading it
further.

This paper introduces a complimentary approachperaiing system security that surfaced only
recently. It focuses on analyzing data-flows framd & sources of sensitive information instead of
files, directories and devices [1]. The basic idethat sensitive information flows from an initial
container to others and security policies are @efiby restricting the flows. Containers in this-con
text can be files and processes.

Commercial solutions based on this approach hawegad in the last couple of years under the
broad business term of Data Loss Prevention or Hld®vever, none of them uses sophisticated
mechanisms of evaluating data-flows and implemaiyt ‘@d-hoc' logic.

This paper tries to solve the problem of creatirigrenal platform independent framework for mo-
deling data-flow of sensitive information It progasa model that can be used to define and verify
security policies following the described approsxlperating system security.

The framework discussed in the following pagesder®nly modern operating systems designed
for Von Neumann architecture computers with virto@mory and a separate address spaces of
processes. Notable examples of such operatingnsystee all POSIX compatible ones including
Microsoft Windows and Linux.

2. STATE BASED DATA-FLOW MODEL

For the purpose stated in the introductory chaptprpopose the following state-based data flow
model

(D,K,P,H,S,S,V,T) 1)
where:
D: set of sensitive information types
K: set of possible containers for elements of D
elements of K are representations of files antgsses

P: set of all possible processes in the sy:P U K
H: set of all container identifiers
elements of H are representations of filenanilesdéscriptors, handles etc.

S: set of all possible states of the m¢S = (K - ZD)X(K - ZK)X(PX H - K)

Sp: initial state of the mod Sp us
V: set of system calls on the modeled operatirsesy

T: transition functior SXPxV - S

It is based on the model proposed by M.Harvan [3].

2.1. SENSITIVE INFORMATION POISONING

The model has been challenged by my academic celtegs practically unusable because of a side
effect that occurs with evaluating sensitive infation profileration in this way. | have named this
effect 'sensitive information poisoning' and isthdsscribed as uncontrollable proliferation of sen-
sitive information into most or even all contain@rgshe model as a direct implication of their di-
rect and undirect connections.Fig. 1 shows theutiool of this effect.

Larger circles represent containers while smalkaegresent that sensitive information is possibly
present. Arrows depict connections between contairesulting from file operation system calls
being invoked. Process containers are highlighyediashed borders.

To prevent this from happening, we need to autarallyi add limitations to process containers
when they connect with a container containing s$imesinformation. These limitations should re-

strict them from connecting with other containevataining other types of sensitive information or
those that contain no sensitive information atA&lltomatic limitations can be easily incorporated
into the model with a basic library of security ip@s. The last section of this chapter deals with
details. Unfortunaly, the presented solution to'slemsitive information poisoning' problem is also
the cause of some practical disadvantages for eatswas described in the Practical limitations
chapter.

Figure 1: Evolution of sensitive information poisoning effec

2.2. TRANSITIONS: SYSTEM CALL MODELING

Transitions between states of the model represasters calls being executed. There are as many
transition types as there are different systens @allthe particular operating system we're curyentl
modeling. Each operating system is going to haseown set of transitions altought some are
bound to be universal as operating systems thiafysétie conditions stated in the first chaper tend
to follow the same basic principles.

To be able to define a transition representingexifip system call, we need to look at how its se-
mantics affect the sets of our data flow model.aBse states of the model are defined as triples of
functions, we need an additional notation for sfyéw their changes. The easiest way to explain it
is by example, so let us take a look at a teoretiaasition for a system call that opens a file de
scriptor in eq. (2)

OsO|c - 2°|oio|c - 2°),of 0[PxF - c|,OpOP,OnOF,,OrvOF,, :
((s.1, £), p,open(n,rv),(s.1, f[(p.rv) - f(p.n)]))OR

Eq.2 translates to: if an open system call is ssgfodly executed, process p opens a file with name
n. The operating system return a file descriptorTihis leads to the state being modified, so that a
mapping from (p, rv) to the container named byrf)p,

(@)

2.3. DEFINING SECURITY POLICIES

Using the proposed model makes it possible to defigcurity policies as logical predicates with
operators on sets of the model. For example:

. IMPLEMENTATION

Implementation of a system, that would be able &ntain a digital representation of the proposed
model with policies and apply transitions to it da®n real-time monitoring of system calls being

executed, is platform specific and is bound to $adteallenges. The target operating system needs
to provide an interface for evaluating system catlgdirectly incorporate the proposed system with
other security mechanisms.

To effectively apply security policies that cometwihe model, the implemented system needs to
block system calls that would result in a transacthat would put the model in a forbidden state.
This process must be transparent to applicatiodsshould have the same consequences as if the
system call was denied by the operating system.

3.1 PROOF OF CONCEPT

| successfuly created a proof-of-concept implent@rtaon Microsoft Windows using a system call
interposition technigue known as 'API hookinginitolves finding the addresses of system calls in
process memory and replacing them with addressesvefplaceholder functions [4].

In my implementation, the placeholder functions ased to apply transactions to the current state
of the model, invoke the original system call ardits return value to the calling process. That
is, if the applied transactions do not violate gfeted policies. In the opposite case, it reveres t
transaction and passes an access denied retumteahe calling process.

The current state of my proof-of-concept only easds transactions for basic system calls used for
opening, reading, writing and closing files. Intergess communication, clipboard and screenshot
related system calls are not supported in thisimerdt works well even for process trees with
some practical limitations described in the nexapathr. A high level diagram of my system archi-
tecture is shown in Fig.2.

Representation of current model
state

— Thread 1

A

Result

Thread 2 Apply transition if allow

Invake Spscall

Invake Syscall _,.// .
e

L5/ SYSCALLTABLE > Policy Evaluator >
et -~

A
Result

/ \ ALLOW
| 05 Kernel 3

Figure 2: Proof-of-concept architecture diagram.

4. PRACTICAL LIMITATIONS

There are applications that rely on configuratibesfand need to have write access to them all the
time. This is something we can not allow othervirge file would soon ‘poison’ all files opened by
these applications as containing sesitive datateTare two possible ways of solving this problem
without breaking the applications functionality:

1) Denying writes to configuration files while passimguccess return values to applications.

2) Coding exceptions into the system to ignore transas reflecting system calls targeting
the configuration files.

Both are far from ideal. First case could resultanlty application behavior. Second would intro-
duce a potentially serious security hole. Evendftwust the application itself, it could be expait
by malicous users with knowledge of exceptiondagystem [4].

Another practical limitation is that automatic pidis (described in previous chapters) need to be
generated and enforced. The side effect is thas @se limited to opening only files containing the
same type of sensitive information for writing atirae per application instance. While it does not
present us with a security flaw or dysfunctionssiain annoyance for users and might objectively
affects their productivity.

Direct support from target operating systems walrbquired to tackle these and more upcoming
challenges to successfully implement and deployaalyxtion usable solution based on the pro-
posed approach.

5. CONCLUSION

In this paper, | have introduced a complementapr@grech to information security on the operating
system level. Because current state-of-the-artiveoét products following its philosofy are using
ad-hoc methodologies to achieve their goals, | lmeposed a state-based data flow model to be
able to formally define, verify and enforce segugblicies based on sensitive information prolife-
ration. To prove my point, | have created a tegil@mentation and evaluated practical limitations
as challenges for further improvement and integnaitito operating system security mechanisms.

It is clear that the proposed system is never grmqgovide an absolute protection of confidentiali
ty of sensitive information without support frontdat operating systems, but it does add a new la-
yer of security against social engineering and aethbijacking attacks. Due to practical limitation
described in this paper, it currently needs to miytrusted applications being utilized to access
sensitive information. It is important to understahat this new approach is not there to replace
time tested ones, but to complement them.

REFERENCES

[1] Clifton Phua, Protecting organisations from persateta breaches, Computer Fraud &
Security, Volume 2009, Issue 1, January 2009, Pa#8sl8, ISSN 1361-3723,
10.1016/S1361-3723(09)70011-9.

[2] Ouellet, E., and Proctor, P.E., Magic QuadrantGontent-Aware Data Loss Prevention,
Technical Report, RA4 06242010, Gartner RAS CorseBech, 2012

[8] M. Harvan, State-based Usage Control Enforcemetht Bata Flow Tracking using System
Call Interposition, Network and System SecurityQ20SBN 978-1-4244-5087-9 p.373-38

[4] Garfinkel, Tal. "Traps and pitfalls: Practical plefms in system call interposition based
security tools." Proceedings of the Network andtriiisted Systems Security Symposium.
Vol. 33. 2003.

