
A NEW ALGORITHM FOR FAST BLOCK-MATCHING

MOTION ESTIMATION BASED ON FOUR-NEIGHBORHOOD

BLOCKS

Ibrahim Nahhas

Doctoral Degree Programme (2), FIT BUT

E-mail: xnahha00@stud.fit.vutbr.cz

Supervised by: Martin Drahansky

E-mail: drahan@fit.vutbr.cz

Abstract: Block matching for motion estimation has been widely used in video compression for ef-

ficient transmission and storage of video data. The motion estimation is a process which determines

the motion between two frames of a video signal. This paper presents a new algorithm for fast

block matching algorithm based on Four-neighborhood search (FNS), this algorithm can signifi-

cantly speed up the computation of the block matching by reducing the number of checked points.

Theoretically has been shown that 88% to 92% of operations can be saved while maintaining the

quality of video.

Keywords: Motion Estimation, Block Matching, Four-neighborhood Search.

1. INTRODUCTION

Image and video compression was and still is a very active field of research and development for

over 20 years and many different systems and algorithms for compression and decompression have

been proposed and developed. Video compression algorithms operate by removing redundancy in

the temporal, spatial and/or frequency domains and the goal of the motion estimation and compen-

sation is to reduce temporal redundancy between transmitted frames [1]. Changes between video

frames may be caused by object motion, camera motion and lighting changes. It is possible to esti-

mate the trajectory of each pixel between successive video frames, producing a field of pixel trajec-

tories known as the optical flow. However, this is not a practical method of motion compensation

for several reasons. An accurate calculation of optical flow is very computationally intensive and it

would be necessary to send the optical flow vector for every pixel to the decoder. To have a practi-

cal method of motion estimation we divide the frame into non-overlapped, equally paced, fixed size

small rectangular sections, called „blocks“, and determine all pixels inside the block to have the

same vector motion to compensate the movement of „blocks“ of the current frame. In contrast, the

block matching technique is simple, straightforward, and very efficient yet. It has been by far the

most popularly utilized motion estimation technique in video coding. In fact, it has been adopted by

all the international video coding standards: ISO MPEG-1 and MPEG-2, and ITU H.261, H.263

and H.264.

2. BLOCK MATCHING

The block matching motion estimation technique based on segmentation the current frame into

blocks and the determination of all pixels inside the block have the same displacement vector,

which was estimated by finding its best-matched counterpart in the previous frame. The block size

needs to be chosen properly. In general, the smaller the block size, the more accurate, but leading

to more motion vectors to be estimated and encoded, which means an increase in computation and

side information. As a compromise, a size of 16×16 pixels is considered to be a good choice – this

has been specified in the international video coding standards such as H.261, H.263 and MPEG-1,

MPEG-2 [2][3]. The Figure 1 illustrates the principle idea of block matching technique, where

segment an image frame at the moment tn into non-overlapped p×q rectangular blocks. Consider

one of the blocks centered at (x, y). It is assumed that the block is translated as a whole. Conse-

quently, only one displacement vector needs to be estimated for this block. In order to estimate the

displacement vector, a rectangular search window is opened in the frame tn-1 and centered at the

pixel (x, y) as in Figure 2, than a rectangular correlation window of the same size p×q is opened

with the pixel located in its center. A certain type of similarity measure (correlation) is calculated.

After this matching process has been completed for all candidate pixels in the search window, the

correlation window corresponding to the largest similarity becomes the best match of the block un-

der consideration in frame tn and there are various cost functions to calculate best matching, com-

putationally expensive is Mean Absolute Difference (MAD) [9] given by equation (1), Mean

Squared Error (MSE) [2] given by equation (2) and Sum of Absolute Difference (SAD) [4] given

by equation (3).

∑∑| |

(1)

∑∑()

 (2)

 ∑∑| |

 (3)

Where N is the side of the macro bock, Cij and Rij are the pixels being compared in current macro

block and reference macro block, respectively. The relative position between these two blocks (the

block and its best match) gives the displacement vector. In this paper, we will focus on Four-

neighborhood search and compare it with 5 different types of block matching algorithms varying in

number of positions searched and computational cost of the matching error.

 Figure 1: Principle idea of block matching. Figure 2: Matching process.

2.1. BLOCK MATCHING SEARCH ALGORITHMS

Full Search [10] algorithm is the first and simplest algorithm for block matching. In an exhaust

searching for the best matching, the correlation window is moved to each candidate position within

the search and the minimum dissimilarity gives the best matching. Full search algorithm provides

the highest PSNR but at the same time suffers from long computational time so needs an improve-

ment with maintaining the same PSNR and there are number of block matching algorithms which

have been developed to accelerate the block matching process to reduce the search time which pos-

es great challenge for real-time codec implementation. We classify these techniques into three cat-

egories:

 Partial Search Set techniques reduce the number of the searched points.

 Partial-Matching-Error techniques reduce the computational cost of the matching error for

each search points.

 Hybrid techniques are combination of first and second categories to further improve the effi-

ciency of search techniques.

3. FOUR-NIEGHBORHOOD SEARCH (FNS)

The basic idea behind the proposed (FNS) relies on reducing the number of checked points within

macro- block using simple search strategy depends on calculating the weight between the values of

centered point with the four points surrounding it and compare the result with two values the first

one is the ideal value and when cost function gives this value the searching procedure stops while

the second one is the updated value which has initial value from dissimilarity from the same cen-

tered point at previous and actual frame and change during the process depending on the better

matching every step. NFS also depends on center biased searching and sets a variable pattern size

of steps starting from one in first step and increase by one only and only if the centered point

achieves the better matching relative to surrounding points. The number of steps varies depending

on the type of motion activity of video and ranges from 1 to no limits steps and the number of

checked points depends also on type of motion activity of video and ranges from 5 to no limit. The

cost function used in FNS is SAD criteria [4] given by equation (3). We summarize the algorithm

first step calculate dissimilarity between central point and its four surrounding points with distance

equal one now we have three possibilities: If the central point or one the surrounding points achieve

the ideal value of weight we stop the searching directly. If the central point has the better value of

weight we save the same central point with increase the size of distance by one and repeat calculat-

ing the weight with new distance while if one of surrounding points has the better value of weight

we change the central point to it and repeat the procedure from beginning. We repeat this operation

eight times or even have a best matching. Figures 3 till 6 illustrate the algorithms with different

scenarios. FNS algorithm can significantly speed up the computation of the block matching, theo-

retically has been shown that 88% to 92% of operations can be saved while maintaining the quality

of video which should be close to that of Full Search and also FNS is very effective in real time ap-

plications because it is very simple and saves much of computational time.

Figure 3: FNS – Scenario 1 Figure 4: FNS – Scenario 2

Figure 5: FNS – Scenario Figure 6: FNS – Scenario

One problem that occurs with the FNS is that it uses a small size of step in the first round, which

becomes inefficient for large motion estimation and needs more time to get a best matching so it is

excellent performance for low motion activity video and good performance for high motion activity

video.

4. RESULTS

To assess the performance of the proposed FNS algorithm, we compared these algorithms with

other fast search algorithms (Full Search [10], Three Step Search [5], New Three Step Search [6],

Four Step Search [7], Diamond Search [8]). The comparisons of fast search algorithms was based

on applying the different algorithms on the scenario with typical size of block 16×16 pixels and

maximal movement 8 to find the best matching and compare between performances of algorithms.

The Table 1 indicates statistically the PSNR difference (ΔPSNR) between that of Full Search and

that of a fast search algorithm and the average number of searches required per macro block (SP)

using the six block matching algorithms and also speed up of all 6 fast full algorithms relative to

full search algorithm and all results.

Table 1: Results of BMAs in terms of ΔPSNR (DB) and number of SPs per block.

 FS TSS NTSS FSS DS FNS

ΔPSNR 0.00 -0.24 -0.26 -0.29 -0.25 -0.23

SP 225.00 25.00 24.00 22.00 20.00 17.50

Speedup 1.00 9.00 9.37 10.22 11.25 12.85

During the course of this project all of the above 6 algorithms have been implemented, using lumi-

nance popular video sequences of 50 frames using CIF formats (352×288) with large motion activi-

ty ”Stefan” video sequence. Table 2 indicates maximum value of PSNRs of different search algo-

rithms for “Stefan” video for the first 50 frames, average number of searched positions using the 6

block matching algorithms and speed up of all 6 algorithms.

Table 2: Results using the “Stefan” video sequence.

 FS TSS NTSS FSS DS FNS

PSNR 20.989 20.710 20.660 20.614 20.619 20.630

SP 225.000 23.029 21.106 20.642 19.035 17.50

Speedup 1.000 9.770 10.660 10.900 11.820 12.85

5. CONCLUSION

A Four-neighborhood search algorithm (FNS) was proposed. This algorithm significantly speeds

up the motion estimation procedure and substantially decreases the checked points and computa-

tional time, when compared with fast search algorithms, still providing similar quality performanc-

es. As a consequence, it was proven as to be specially suited to be implemented in most embedded

systems with restricted computational requirements, i.e. it is often adopted by portable devices and

for real time applications.

AKNOWLEDGEMENTS

This research has been realized under the support of the following grants: “Security-Oriented Re-

search in Information Technology” – MSM0021630528 (CZ), “Tools and Methods for Video and

Image Processing for the Fight against Terrorism” – MV VG20102015006 (CZ) and “The

IT4Innovations Centre of Excellence” – IT4I-CZ 1.05/1.1.00/02.0070 (CZ).

REFERENCE

[1] Iain E.G. Richardson, Video Coding Concepts, in H.264 and MPEG-4 Video Compression,

Essex, 2003, England, ISBN 0-470-84837-5.

[2] A. Barjatya, Block Matching Algorithms For Motion Estimation, Dept. of Electrical Engi-

neering, Utah State University, Utah, DIP, 2004.

[3] D. V. Manjunatha et al, Comparison And Implementation Of Fast Block Matching Motion

Estimation Algorithms For Video Compression, International Journal of Engineering Sci-

ence and Technology, Vol. 3, No. 10, p. 5, 2011.

[4] Z. Ahmed et al., Fast Computations of Full Search Block Matching Motion Estimation

(FCFS), PGNeT Conference, 2011.

[5] T. Koga et al., Motion compensated interframe image coding for video conference, Proceed-

ings of NTC8, 1981.

[6] R. Li, B. Zeng and M.L. Liou, A new three-step search algorithm for block motion estima-

tion, IEEE Transactions of Circuits and Systems for Video Technology, Vol. 4, No. 4, pp.

438–442, 1994.

[7] L.M. Po and W.C. Ma, A Novel Four-Step Search Algorithm for Fast Block Motion Estima-

tion, IEEE Transactions of Circuits And Systems For Video Technology, Vol. 6, No. 3, pp.

313-317, 1996.

[8] S. Zhu and K.K. Ma, A New Diamond Search Algorithm for Fast Block-Matching Motion

Estimation, IEEE Transactions of Image Processing, Vol. 9, No. 2, pp. 287-290, 2000.

[9] C.M. Lin and S.C. Kwatra, Motion compensated interframe color image cod-

ing, International Conference on Communications, Amsterdam, Part 1, pp. 516 –520,1988.

[10] M. Ahmadi and M. Azadfar, Implementation of fast motion estimation algorithms & com-

parison with full search method in H.264, IJCSNS International Journal of Computer Sci-

ence & Network Security, Vol. 8, No. 3, pp. 139-143, 2008.

