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ABSTRACT

We investigate quasi–multiautomata in which as input–sets are used (semi–)rings of smooth
continuous positive functions and state–sets are formed by linear differential operators in the
Jacobi form. Further we investigate certain properties of such structures and the same properties
are examined for quasi–multiautomata input–sets and state–sets are interchanged.

1 INTRODUCTION

The contribution is devoted to quasi–multiautomata equipped by state (semi–) hypergroup of
second-order linear differential operators in the Jacobi form. The quasi–multiautomata are one
of the basic theoretical resources for modelling of discrete computing systems. Modifications
of these concepts are described and studied in many papers, these concepts are further perceived
as concrete specifications of general input-output systems . Founder of the general system the-
ory was Austrian Karel Ludwig von Bertalanffy. His mathematical model of an origanism’s
growth over time, published in 1934, is still in used today. This contribution is a continuation
of [7] where some motivation factors are mentioned. Cf. also [4] Constructions of algebraic
binary hyperstructures (semihypergroups and hypergroups) from ordered algebraic systems are
based on a certain lemma on principal ends generated by products of pairs of elements know as
Ends-lemma. cf. [2, 3, 7, 9, 10]. In the present contribution we construct actions of commu-
tative transposition hypergroups i.e. join spaces created from rings of continuous and smooth
functions of a given class on semihypergroups or hypergroups of second order linear ordinary
differential operators.

2 HYPERGROUPS AND AUTOMATA

Let J be an open interval of real numbers, C(J) be the ring of all continuous functions on J and
C+(J) its subsemirings of all positive functions. In what follows we denote L(p,q)y = y′′+
p(x)y′+q(x)y and L(0,q)y = y′′+q(x)y; p,q ∈ C(J). Otakar Borůvka has obtained a criterion
of a global equivalence for second order differential equations within the Jacobi form, i.e.

y′′+q(x) · y = 0, q ∈ C(J).



and he also found corresponding global canonical forms for such equations. This is motiva-
tion of the investigation of operators in question. The other is quite concrete: Considering a
two–parameter model y(t) = t2e−λt of certain non periodic signals, we obtain that these func-
tions satisfy differential equation y′′(t)+q(t) · y(t) = 0 where q(t) = (4λt−λ2t2−2) · t−2 We
will consider the bellow defined operation on the set of such differential operators (under the
supposition q(x) 6= 0, x ∈ J). Denote by JA2(J) the set of operators defined

JA2(J) = {L(0,q); q ∈ C+(J)}

and its subset
JCA2(J) = {L(0,r); r ∈ R+}.

Recall some basic notions and notation of the hypergroup theory from c.f. [1, 3, 4, 7]. A hyper-
groupoid is a pair (H,•), where H 6= 0 and • : H×H −→ P ∗(H) is a binary hyperoperation
on H. (Here P ∗(H) denotes the system of all nonempty subsets of H). If a• (b•c) = (a•b)•c
holds for all a,b,c ∈ H then (H, •) is called a semihypergroup. If moreover the reproduction
axiom (a•H = H = H •a for any element a ∈ H) is satisfied, then the pair (H,•) is called a
hypergroup.

The set JA2(J) is a set of differential operators in the Jacobi form. On this set we define hyper-
operation “∗” by the rule: for L(0, p), L(0,q)∈ JA2(J), we put L(0, p)∗L(0,q) = {L(0,ϕ); p(x)·
q(x)≤ ϕ(x); ϕ ∈ C+(J)}. Then (JA2(J),∗) is a commutative hypergroup; for the prof see [7].
Its subset JCA2(J) is a set of differential operators in the Jacobi form with constant coeffi-
cients. On this set we define hyperopreation “∗C” by the rule: For L(0,s), L(0,r) ∈ JCA2(J),
we put L(0,s) ∗C L(0,r) = {L(0, t);s · r ≤ t; t ∈ R+}. This hypergrupoid (JCA2(J),∗C) is a
commutative subhypergroup of the hypergroup (JA2(J),∗): For the proof see [7].

These hypergroups will create quasi–multiautomata (without output function) in the role of
input alphabets. We are going to observe some their specific properties.

Definition 2.1 [1] Automaton without output is a triad A= (A,S,δ) where A,S are non-empty
sets and: δ : A×S→ S is a transition map satisfying these conditions:

1) δ(e,s) = s for any s ∈ S and the identity e ∈ A, if it exists (the identity condition)

2) δ(b,δ(a, s)) = δ(a ·b, s) for all a, b ∈ A, s ∈ S (the mixed associativity condition).

Set S is called the state–set of the automaton A, the set A is called the set of input symbols of
the automaton A and δ is called the transition functions. Elements of the set S are called states,
elements of the set A are called words.

Definition 2.2 [1] Quasi–multiautomaton without outputs is a triad M= (H,S,δ) where (H, ·)
is a semi–hypergroup, S is a non–empty set and: δ : A× S→ S is a transition map satisfying
this condition:

1) δ(b,δ(a, s)) ∈ δ(a · b, s) for all a, b ∈ A, s ∈ S (the generalized mixed associativity
condition - GMAC).

Set S is called the state–set of the quasi–multiautomaton M, the structure (H, ·) is called the
input (semi–)hypergroup of the quasi–multiautomaton M and δ is called the transition functions.
Elements of the set S are called state, elements of the set A are called input symbols (or words).



3 PROPERTIES OF STATE AUTOMATA

We consider a structure A1 = ((C+(J),⊕),JA2(J),δ1) where f ⊕g = (
⋃

[a,b]∈R+
0 ×R

+
0
[a f +bg)≤

By theorem 3.2 [5] the hypergroupoid (C+(J),⊕) is a hypergroup satisfying transposition ax-
iom, thus it is a join space [2], and the set JA2(J) is a state set. Define δ : (C+(J),⊕)×
JA2(J)−→ JA2(J) by

δ1( f ,L(0,q)) = L(0, f +q)

This structure is satisfying GMAC

δ1(g,δ1( f ,L(0,q))) ∈ δ1( f ⊕g,L(0,q)),

which is verified in paper [7].

Further we consider a structure A2 = ((C+(J),�),JA2(J),δ2), where f �g = (
⋃

α∈R+
0
[α f ·g)≤

The hypergroupoid (C+(J),�) is a hypergroup satisfying transposition axiom, thus it is a join
space [2, 5] Define δ2 : (C+(J),�)×JA2(J)−→ JA2(J) by

δ2( f ,L(0,q)) = L(0, f ·q)

This structure is satisfying GMAC

δ2( f ,δ2(g,L(0,q))) ∈ δ2( f �g,L(0,q))

Indeed, suppose L(0,q) ∈ JA2(J) and f ,g ∈ C+(J).
The left hand side:

δ2( f ,δ2(g,L(0,q))) = δ2( f ,(L(0,g ·q))) = L(0, f ·g ·q)

The right hand side is of the form:

δ2( f �g,L(0,q)) = δ2(
⋃

α∈R+

[α f ·g)≤, L(0,q) = {L(0,q ·ϕ);∃α ∈ R+ : α f ·g≤ ϕ}.

For α = 1 and ϕ = f ·g we have L(0,q ·ϕ) ∈ δ2( f �g,L(0,q))

This structure A2 is satisfying GMAG thus it is quasi–multiautomaton.

Definition 3.1 [1] A quasi–multiautomaton A= (H,S,δ) is said to be:

• Abelian (or comutative) if δ(s,x · y) = δ(s,y · x) for any triad [s,x,y] ∈ S×H×H,

• Cyclic if there is a state s ∈ S such that for any state t ∈ S there exists an element a ∈ H
with the property δ(s,a) = t.

Remark 3.2 It is not difficult to show the quasi–multiautomaton A1 is not cyclic. Indeed,
suppose L(0,q),L(0, p)∈ JA2(J) and f ∈C+(J), then δ1(L(0,q), f ) = L(0,q+ f ) for q= p− f
we have δ1(L(0,q), f ) = L(0, p− f + f ) = L(0, p). However, function q = p− f /∈ C+(J), for
p(x) = 2x and f (x) = x2 then q(x) =−x2+2x thus q /∈C+(J), whenever (−∞,0)∩J or (0,∞)∩
J are non–empty intervals.



Proposition 3.3 Quasi–multiautomata A1,A2 are abelian and the quasi–multiautomaton A2 is
cyclic.

Proof. Suppose L(0,q) ∈ JA2(J) and f ,g ∈ C+(J).
Then f ⊕ g = (

⋃
[a,b]∈R+

0 ×R
+
0
[a f + bg)≤ and δ1 : (C+(J),⊕)× JA2(J) −→ JA2(J), is defined

by δ1( f ,L(0,q)) = L(0, f +q)
Evidently the hyperoperation “⊕” on C+(J) is commutative. Thus

δ1(L(0,q), f ⊕g) = δ1(L(0,q),g⊕ f )

for any triad [L(0,q), f ,g] ∈ JA2(J)×C+(J)×C+(J).
So the quasi–multiautomaton A1 = ((C+(J),⊕),JA2(J),δ1) is abelian (or commutative). And
in the same way we can show that hyperoperation “�” is commutative. Thus

δ2(L(0,q), f �g) = δ2(L(0,q),g� f )

and the structure A2 = ((C+(J),�),JA2(J),δ2) is also abelian (or commutative).

We show that the structure A2 = ((C+(J),�),JA2(J),δ2) is cyclic. Suppose L(0,q),L(0, p) ∈
JA2(J), f ∈ C+(J) and δ2 : (C+(J),�)× JA2(J) −→ JA2(J), is defined by δ2( f ,L(0,q)) =
L(0, f ·q).
Then δ2(L(0,q), f ) = L(0,q · f ); for q = p

f thus we have δ2(L(0,q), f ) = L(0,q · f ) = L(0, p
f ·

f ) = L(0, p), i.e. the quasi–multiautomaton A2 is cyclic.

From the above consideration there follows that A2 is strongly connected which means that for
any pair of states s1,s2 there exist an input symbol a ∈ A with δ2(a,s1) = s2.

Remark 3.4 We can obtaine the structure AJ = ((JA2(J),∗),C+(J),δJ), where (JA2(J),∗) is
the (semi–)hypergroup of inputs, C+(J) is the state–set and δ : (JA2(J),?)×C+(J)−→C+(J)
is defined by:

δJ(L(0,q), f ) = q · f .

This structure is satisfying GMAC:

δJ(L(0,q),δJ(L(0, p), f )) ∈ δJ(L(0,q)∗L(0, p), f )

Indeed, suppose L(0,q),L(0, p) ∈ JA2(J) and f ∈ C+(J).
The left hand side: δJ(L(0,q),δJ(L(0, p), f )) = δJ(L(0,q), p · f ) = p ·q · f

The right hand side is of the form: δJ(L(0,q) ∗L(0, p), f ) = {δJ(L(0,ϕ), f ); p · q 5 ϕ} = {ϕ ·
f ; p ·q 5 ϕ,ϕ ∈ C+(J)}.Putting p ·q = ϕ we obtain δJ(L(0,q),δJ(L(0, p), f )) = p ·q · f ∈ {ϕ ·
f ; p ·q 5 ϕ,ϕ ∈ C+(J)}= δJ(L(0, p)∗L(0,q), f ) for arbitrary function f ∈ C+(J).

The structure AJ is satisfying GMAG and thus it is a quasi–multiautomaton.

The quasi–multiautomaton AJ has the same properties as the above structure A2. We can eas-
ily verify that the quasi–multiautomaton AJ is abelian (or commutation), cyclic and strongly
connected.

Remark 3.5 We can used the set JCA2(J) instead of the set JA2(J) and corresponding results
will be analogical. This can be easily verified.



4 CONCLUSION

In connection with the above considerations there can be constructed multiautomata (with out-
put), A = (A,S,B,δ,λ), where A,B are (semi–)hypergroups of input, output symbols respec-
tively. Further δ : A× B −→ S is the transition (next–state) function satisfying GMAC and
λ : A× S −→ B is the output function. Concrete interpretations of these structures will be ob-
jects of further investigations of the author.

These quasi–multiautomata are systems that can be used for the transmission of information of
certain type. They are belonging to systems involving the modelling of various processes and
the reciting of inner connections of time developable processes.
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