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Abstract: In this paper we study a formal context from the point of view of a topology. In a formal
concept analysis basic operator is derivation operator. And here we describe topological properties
and objects in terms of derivation operator.
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1 INTRODUCTION

The main idea of the article is an interaction of two branches of mathematics – formal concept analysis
and general topology. Formal concept analysis (FCA) was proposed by Rudolf Wille in 1984. Its
core is built on applied lattice and order theory. Practical applications were found in different fields
including data mining, text mining, machine learning, hierarchical organization of web search results,
software development and etc. FCA works with data. And data is described with a binary relationship
between an object set and an attribute set. On the other hand, general topology studies properties of
topological spaces. The simplest interpretation for an arbitrary topological space we can construct in
the next way. An arbitrary topological space (X ,τ) we can interpret as a formal context (X ,τ,∈) with
the object set X , the attribute set τ and incidence relation∈. Many other, more advanced interpretations
for a topological space can be found in the literature. On the contrary, from an arbitrary context we can
construct in natural way several different topologies. And that topologies deserves a special research.

2 BASIC DEFINITIONS

Definition 1 (formal context) A formal context is a triple (X ,A,`) where X, A are sets and `⊆ X×A
is a binary relation between them.

In formal concept analysis, the elements of X are called objects and the elements of A are called
attributes of the context (X ,A,`). The binary relation ` is called the incidence relation. We say x has
(the attribute) a or x satisfies a.

Definition 2 (formal concept, extent, intent) Let (X ,A,`) be a formal context, P⊆ X, F ⊆ A. We put
P′ = {a|a ∈ A,x ` a for every x ∈ P} and F ′ = {x|x ∈ X ,x ` a for every a ∈ F} . Note: If P = {p} is a
singleton, we simply write p′ = P′. Similarly we write f ′ = F ′ for F = { f}. The pair (P,F) is called a
formal concept of the context (X ,A,`) if P′ = F and F ′ = P. The mappings ′ : 2X → 2A and ′ : 2A → 2X

are called the derivation operators. We also call P the extent and F the intent of the concept (P,F).

Now we will define the second derivation operator for a context (X ,A,`) (by a composition of the
first derivation operators):

(1) Map ′′ : 2X → 2X that for P ∈ X , P 7→ P′′ ,



(2) Map ′′ : 2A → 2A that for F ∈ A , F 7→ F ′′ .

Proposition 1 (Basic properties) Let (X ,A,`) be a context and M,M1,M2 ⊆ X, N,N1,N2 ⊆ A then

(1) M1 ⊆M2 ⇒M′
2 ⊆M′

1,

(2) M ⊆M′′,

(3) M′ = M′′′,

(1’) N1 ⊆ N2 ⇒ N′
2 ⊆ N′

1,

(2’) N ⊆ N′′,

(3’) N′ = N′′′.

Definition 3 (Closure axioms) A closure operator φ on a set G is a map assigning a closure φX ⊆ G
to each subset X ⊆ G if

(1) X ⊆ Y ⇒ φX ⊆ φY for each subset X ,Y ⊆ G,

(2) X ⊆ φX for each subset X ⊆ G,

(3) φφX = φX for each subset X ⊆ G.

An operator φ on a set G is a topological closure operator if

(4) φ(G∪M) = φG∪φM.

Second derivation operator is a closure operator. But unfortunately it isn’t necessary be a topological
closure operator.

Let X be a set, ζ⊆ 2X . Let ζF be the family of all finite unions of elements of ζ (including the empty
union, whose result is /0). Then ζF is a base for the closed sets of some topology τ on X and ζ is closed
subbase; or, in other words, the family σ =

{
X r P|P ∈ ζF

}
is an open base for the topology τ.

3 MAIN RESULTS

Definition 4 (left and right topologies) Let (X ,A,`) be a formal context. The topology on X, gen-
erated by its closed subbase {a′|a ∈ A} is called the left topology on (X ,A,`). Similarly, the right
topology on (X ,A,`) is the topology on A generated by the family {x′|x ∈ X} used as its subbase for
the closed sets.

Results for the left and right topologies are symmetric. So we will study here only left topology. The
topological closure operator defined by this topology we will denote by cl.

Definition 5 A preorder of specialization on a topological space (X ,τ) is the binary relation ≤ sat-
isfying the condition x≤ y⇔ x ∈ cl{y}. We can rewrite this formula as cl{y}=↓≤ {y}.

The following question arises in natural way. What is the difference between operators ′′ and cl?
Before we start to investigate that question we need next theorem.

Theorem 3.1 Let (X ,A,`) be a formal context and τ is its left topology on X, C is a set of all closed
sets in the topological space (X ,τ). The following sets are subbases for C in the topology τ:

(1) C1 = {a′|a ∈ A}



(2) C2 = {F ′|F ⊆ A}

(3) C3 = {P|(P,F) is a formal concept of the context (X ,A,`)}

Proof. Let’s denote a topology generated by closed subbases C1, C2, C3 correspondingly τ1, τ2, τ3. It
is obvious that τ = τ1. Let’s prove the inclusion τ1 ⊆ τ3 ⊆ τ2 ⊆ τ1 in succession. If (P,F) is a formal
concept of the context (X ,A,`) then P = F ′ ⊆ X , F = P′ ⊆ A. It immediately follows that C3 ⊆ C2 and
τ3 ⊆ τ2. Let’s take an arbitrary element a∈ A and denote a′ = P, F = P′. Than F ′ = P′′ = a′′′ = a′ = P.
And (a′,a′′) is a formal concept, so we obtain C1 ⊆ C3 then it follows τ1 ⊆ τ3. It is remained to prove
τ2 ⊆ τ1. Let’s take F ⊆ A than F ′ =

T
a∈F a′. It means that F ′ is an intersection of sets from C1 closed

in the topology τ1 and then it is closed in the topology τ. And we proved that τ2 ⊆ τ1. �

Lemma 3.2 Let (X ,τ) be a topological space, C be a set of all closed sets, C2 be a subbase for C
and C1 be a set of all finite unions of elements C2 (so C1 is a base for C generated from subbase C2).
Then for an arbitrary element p ∈ X holds

cl{p}=
\
{C|C ∈ C , p ∈C}=

\
{C|C ∈ C1, p ∈C}=

\
{C|C ∈ C2, p ∈C}.

Lemma 3.3 Let (X ,A,`) be a formal context, x,y ∈ X. Then x ∈ y′′ if and only if y′ ⊆ x′.

Proof. Let’s suppose that x ∈ y′′. Then for every a ∈ y′ it holds x ` a and it means that a ∈ x′. Then
y′ ⊆ x′. On the other side, let’s suppose y′ ⊆ x′. Let’s take an arbitrary element a ∈ y′ then a ∈ x′. It
means x ` a and then x ∈ y′′. �

Theorem 3.4 Let (X ,A,`) be a formal context, τ be its left topology on X. Then for an arbitrary
element p ∈ X it holds clτ{p}= p′′.

Proof. According to Lemma 3.2 it holds clτ{p} =
T
{a′| p ∈ a′}. Now we need to check relation

between p′′ and
T
{a′| p ∈ a′}.

Suppose x ∈ p′′. Let’s take a ∈ A that p ∈ a′. Now we need to prove that x ∈ a′. According to
Lemma 3.3 we have p′ ⊆ x′. Besides from formula p ∈ a′ it follows that a ∈ p′, and we can con-
clude a ∈ x′. It is same as x ∈ a′, then x ∈

T
{a′| p ∈ a′}. It follows that p′′ ⊆ clτ{p}.

On the other side, suppose x ∈
T
{a′| p ∈ a′}. According to Lemma 3.3 we need to prove that p′ ⊆ x′.

Lets take an element a ∈ p′. It means that p ∈ a′. We know that the set a′ is a closed set as an element
of closed subbase of topological space (X ,τ), it follows clτ{a} ⊆ a′. Then x ∈ a′ and it is equivalent
to a ∈ x′. Now we can conclude that p′ ⊆ x′. We checked that clτ{p} ⊆ p′′. �

Form the previous theorem it follows that on one-element sets topological closure coincide with a
second derivation operator.

Corollary 1 Let (X ,A,`) be a formal context, τ be its left topology on X, ≤ is a preorder of special-
ization on X equipped with topology τ. The following statements for arbitrary elements x,y ∈ X are
equivalent:

(1) x≤ y,

(2) x ∈ clτ{y},

(3) x ∈ y′′,

(4) y′ ⊆ x′,

(5) x′′ ⊆ y′′,



The Theorem 3.4 make it possible to construct closure of one-element sets in easy way. But what
would happen if we take arbitrary set? The operators ′′ and cl need not necessarily be equivalent for
all other sets (See example 1).

Example 1 Let’s take a set X = {1,2,3}. As a context let’s take (X ,X ,∆X) where ∆X = {(1,1),(2,2),
(3,3)} is a diagonal relation. It is obvious that left topology τ on X is a discrete topology and clτ{p}=
{p} = {p}′ = {p}′′ for every p ∈ X. But for p 6= q it holds {p,q}′ = /0. For example {1,2}′′ = /0′ =
{1,2,3} 6= {1,2}= clτ{1,2}.

Lemma 3.5 Let (X ,A,`) be a formal context. Then every extent is a closed set in the left topology:

Ext(X ,A,`)⊆ τ
cl.

A closed set need not necessarily be an extent.

Proof. 1. Directly follows from Theorem 3.1.

2. Counterexample. Lets take a finite context ({1,2,3},{a,b,c,d},`), where the relation ` is repre-
sented by the table:

` a b c d
1 x
2 x x x
3 x

The set of all closed sets is τcl = { /0,{1},{2},{1,2},{2,3},{1,2,3}}. The set of all extents is

Ext(X ,A,`) = {{1},{2},{2,3},{1,2,3}}. We see, that set {1,2} is closed, but it isn’t an extent. �

Lemma 3.6 Let (X ,A,`) be a formal context and τ is its left topology, then

(1) An arbitrary intersection of extents is a closed set.

(2) A finite union of extents is a closed set.

Proof. 1. An arbitrary intersection of extents is an extent and then is a closed set too.

2. A finite union of closed sets is a closed set. �

Theorem 3.7 Let (X ,A,`) be a formal context and τ is its left topology. Let’s denote ExtF(X ,A,`)
the set of all finite unions of extents. Then:

ExtF(X ,A,`)⊆ τ
cl.

If set X is finite, then
ExtF(X ,A,`) = τ

cl.

Proof. The inclusion for the infinite case is obvious (it directly follows from the Lemma 3.5). Let’s
have a look at the second part. ExtF(X ,A,`) ⊆ τcl is obviously true. Now it remains to prove τcl ⊆
ExtF(X ,A,`). Let Y be an arbitrary closed set in the left topology. Then by the Theorem 3.1 of the
left topology we can easily obtain Y = ∩Jarb ∪I f in M′

i, j where Mi, j ∈ Ext(X ,A,`). Because X is a finite
set, then Jarb is a finite set too. So we have Y = ∩J f in ∪I f in Mi, j = ∪I f in ∩J f in Mi, j. It means, that every
closed set we can represent as a finite union of some extents. �



Definition 6 Let (X ,A,`)be a topological space. A set B ⊆ X is a saturated set in the topology τ on
X if it is an intersection of open sets. If a binary relation ≤ is the preorder of specialization on the
topological space (X ,τ), then set B is saturated iff B =↑≤ {B}= {x|x ∈ X ,∃a ∈ B : a≤ x}.

Theorem 3.8 Let (X ,A,`) be a formal context and (X ,τ) be a left topology on it. Then for an arbi-
trary set P⊆ X the following statements are equivalent:

(1) P is a saturated set,

(2) P =↑≤ {P},

(3) {x|x ∈ X r P,P∩ x′′ 6= /0}= /0,

(4) ∀x ∈ X r P,P∩ x′′ = /0.

Proof. (1)⇔ (2) was mentioned above.

(2)⇔ (3) ↑≤ {P}= {x|x ∈ X ,∃a ∈ P : a≤ x}= {x|x ∈ X ,∃a ∈ P : a ∈ x′′}= {x|x ∈ X ,P∩x′′ 6= /0}=
{x|x ∈ P,P∩ x′′ 6= /0}∪{x|x ∈ X r P,P∩ x′′ 6= /0} = P∪{x|x ∈ X r P,P∩ x′′ 6= /0}. We can conclude
that {x|x ∈ X rP, P∩x′′ 6= /0} ⊂ P must hold, because P∪{x|x ∈ X rP,P∩x′′ 6= /0}= P. But there is
only one possibility {x|x ∈ X r P,P∩ x′′ 6= /0}= /0 (because obviously it is a subset of X r P).

(3)⇔ (4) is obvious. �

4 CONCLUSION

In this paper we started a study of an informational structure named formal context in terms of topol-
ogy. For the finite case, the topologically closed sets are generated as unions of extents. We also
described the relationships between closure operator, second derivation operator and saturation.
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