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Abstract: This contribution deals with attitude estimation algorithm based on measuring angular 

rate, earth magnetic field and accelerations. At first, two main methods usually used for attitude es-

timation are described. Subsequently the particular form of complementary filter attitude estimator 

is shown. Then the tuning of algorithm parameters using MATLAB environment is described. For 

this, precise model of multicopter, which was made in Simulink environment, was used. Testing 

trajectory along with simulated sensor and true data were made using above mentioned model, so 

the comparison through RMSE (Root Mean Square Error) value is available. 
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1. INTRODUCTION 

Attitude estimation is a crucial part of any autonomous aerial system. Usually a typical attitude 

measuring sensor consists of cheap tri-axis MEMS gyroscopes, accelerometers and magnetometers. 

All these sensors are noisy and highly biased. 

The gyroscopes measure three components of angular rate with respect to inertial frame expressed 

in so called body frame (linked with examined object). If the initial attitude is known, the time evo-

lution of attitude can be computed by integrating the angular rate data. Because of the noise and the 

bias which is more or less present in all angular rate sensors the error grows unboundedly in time. 

Using cheap MEMS gyroscopes, the attitude computed only by integration is useless after few tens 

of seconds. 

The accelerometers measure specific force acting on the examined object. If the object is not mov-

ing (or uniformly moving), the accelerometers measure Earth gravitational field. This information 

can be used for computing Roll and Pitch Euler angles directly (Euler angles – one of the possible 

attitude representations [1]). If any acceleration different from gravitational acts on the examined 

body, the information is useless during this period. 

The last sensor, the magnetometer measures magnetic field, if there is no local source of magnetic 

field, this sensor measures Earth magnetic field which in small time horizon provides constant vec-

tor. If we know magnetic vector in reference frame, then by measuring magnetic vector in body 

frame we get limited attitude information (no direct Euler angle can be computed). This infor-

mation is relevant unless the magnetic field is disturbed by local magnetic sources. 

Each of above mentioned type of sensors provides some kind of information regarding attitude. 

However this information alone is not usable for long time attitude estimation with bounded error. 

Usually these three types of sensors are used together and some sophisticated algorithm uses the 

advantages of each sensor and combines the information to provide the best attitude estimate.  The 

most used attitude estimation methods utilize some special type of Kalman filter [2] or Comple-

mentary filter [3]. Each of these methods will be briefly introduced in the following chapter. 



2. METHODS USED FOR ESTIMATION – BASIC PRINCIPLES 

In this chapter only the basic principles of each method will be described. These principles and 

characteristics are more or less general and have no limitation on attitude estimation. 

2.1. COMPLEMENTARY FILTER 

Complementary filter is a filtering technique in frequency domain. Two or more sensors, which 

provide some state variables of measured system, are considered as an input. From each sensor, on-

ly a part of frequency spectrum is used and all sensors together cover all spectrum. This means that 

one sensor complements other in frequency domain, thus the name Complementary. The block 

scheme of complementary filter is depicted in Figure 1. 

 

Figure 1: Principle of Complementary filter. 

If we have two sensors of the same state variable this condition for filter G1 and G2 should be satis-

fied: 

     121  sGsG  (1) 

The Complementary filter is widely used mainly because of the ease of implementation and for its 

simplicity (only one parameter – crossover frequency is required for two sensor case). 

2.2. KALMAN FILTER 

Kalman filter is a well known estimation technique developed in 1960 [4]. It is primarily developed 

for estimating the state of linear systems with additive Gaussian white noise with noisy measure-

ments. If we know the characteristic of all noises, the Kalman filter algorithm guarantee the opti-

mality of its state estimate. The iterative discrete algorithm consists of two steps, the prediction 

step and the correction step. The individual steps of Kalman filter are: 

Prediction step: )()()|1( kkkk UBXAX   (2) 

 RAPAP  )|1( kk  (3) 

Update step: ))|1(())|1(( QCPCCPK  kkinvkk  (4) 

 ))|1()(()|1()1( kkkkkk  XCZKXX  (5) 

   )|1()1( kkk  PCKIP  (6) 

Where )(kX is a state vector at k-th iteration, A is the system matrix, B is the input matrix, C is 

the measurement matrix, Z is the vector of measurements, P is the system covariance matrix, 

R and Q are covariance matrices of system and measurement noises. 

Since the original Kalman filter is only for linear systems some suboptimal adaptation for non-

linear systems were developed. The most common is EKF (Extended Kalman Filter) which uses 



first order Taylor expansion in every iteration. Regarding the attitude estimation, Kalman filter is 

more difficult to use than the complementary filter. There are more parameters to tune (system and 

measurement noise covariance matrices) and the whole algorithm is computationally very expen-

sive and the implementation to the target device with microcontroller needs lot of effort in compar-

ison with complementary filter. 

3. COMPLEMENTARY FILTER ATTITUDE ESTIMATOR 

If we take into account the principle of complementary filter along with characteristic of individual 

sensors mentioned in introduction section, it is beneficial to use only high frequency component of 

gyroscope sensor and low frequency component of the remaining sensor. The implementation of 

complementary filter can have different forms, but the basic principle of frequency filtering is still 

present. Hereafter mentioned algorithm is modified complementary filter attitude estimator from 

[3].  

The rotation matrix is used for internal attitude representation. Rotation matrix is the only unique 

and non-singular attitude representation [1]. The only disadvantage is the number of elements - 9 

(quaternion – 4, Euler angles - 3). There exist simple relations between all these attitude representa-

tions. The core of the algorithm is the discrete equation integrating the gyroscope sensor values us-

ing the rotation matrix R: 

 )(1 Tnnn  ΩIRR  (7) 

 

























0

0

0

xy

xz

yz

ωω

ωω

ωω

Ω  (8) 

Where ΔT is sampling period, n is iteration index, I is identity matrix and ω is vector of angular 

rates (expressed in body frame). The information from accelerometer and magnetometer are passed 

to the core of the algorithm through so-called bias estimate: 
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Where pk , ik , ak , mk and σ are parameters of complementary filter, g is gravitational acceleration 

vector, Ba is measured acceleration m is Earth magnetic vector, subscript I means reference value 

expressed in inertial frame and subscript B means measured value expressed in body frame. The 

terms in (11) and (12) are angular rate vectors expressed in body frame, which would lead to 

alignment of reference and measured vectors. Term (13) causes that the acceleration vector is used 

only when its magnitude is close to value of Earth gravitational acceleration, so it avoids using in-

formation from accelerometer when it is irrelevant. Information from magnetometer is considered 

to be relevant all the time (this assumption can be violated easily in indoor environment). As term 



(9) is suggests direction of rotation leading to alignment (reference vectors with measured vectors) 

multiplied by constant it is clear that this vector (bias estimate) is passed back to the core algo-

rithm: 

 bωω -B  (14) 

Where ω is vector of angular rates from (8), Bω  is measured angular rate by gyroscope and b  is 

bias estimate from (9). Sum of all previous errors in (9) allows to have zero stable error because of 

the same principle as in I term in PID controller. 

Since all computations are usually performed on computer, care has to be taken to rotation matrix. 

Rotation matrix is a special orthonormal matrix (all rows or columns are orthogonal and perpendic-

ular vectors). This property is slightly violated each iteration. Without correction, this would lead 

to divergence of whole algorithm. One of the possible orthogonalization equations is [5]: 
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Equations (7)-(15) form the complete complementary filter algorithm for attitude estimation using 

gyroscope accelerometer and magnetometer. 

4. COMPLEMENTARY FILTER PARAMETER TUNING 

The complete complementary filter algorithm has 5 parameters in total. Using these parameters we 

can control the behavior of the filter, especially bias settling time ( ik ), vector following speed 

( pk ), relevance of magnetometer over accelerometer or vice versa ( ak , mk ) and rejection of accel-

eration (σ). If we set these values randomly, the filter can operate unexpectedly and can diverge. 

Therefore it is convenient to do parameters tuning in simulation environment. For this purpose the 

filter was tested in MATLAB environment. 

Sensor data was generated using precise model of hexacopter. In this model very authentic models 

for sensor data were used (bias random walk, constant bias, white noise, misalignment, scaling fac-

tors ...). The advantage of the simulation model is the knowledge of the true attitude values which 

are to be estimated using complementary filter. 

The parameters tuning was performed using brute-force, this means that huge 5-dimensional array 

of parameters was generated and the complementary filter algorithm was conducted for all sets of 

parameters from this array. The estimated attitude for the testing trajectory was compared with true 

values, and the complete sum of RMSE for whole trajectory was computed. From this RMSE data-

base the parameters set with lowest RMSE sum was declared as the optimal. In Table 1 you can see 

the ranges for individual parameters, for which the test was performed. 

Parameter Start Value  Stop Value Step 

pk  0.1 2.2 0.3 

ik  0.0001 0.0021 0.0002 

ak  0.5 3 0.5 

mk  0.5 3 0.5 

σ 0.5 1 3.5 

Table 1: Parameters Intervals 

The best (lowest) RMSE value was recorded for parameter set in Table 2. 



Parameter pk  ik  ak  mk  σ 

Value 0.4 0.0019 0.5 3 0.5 

Table 2: Best parameter set 

The total RMSE sum for approximately 2 min a 40 sec long test flight was: 

 RMSE = 94.1 (16) 

The plotted Euler angles are on Figure 2. 

 

Figure 2: Euler angles for best parameter set 

5. CONCLUSION 

In this article the complementary filter algorithm for attitude estimation was presented. In the chap-

ter 3 all equation of complementary filter are mentioned. The main contribution is parameter tuning 

using trajectory generated by precise hexacopter model. Result in Figure 2 shows sufficient per-

formance of the filter. The future work will include implementation on a real platform with real 

sensors. 
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