
STATIC VALUE-RANGE ANALYSIS OVER C PROGRAMS

Daniela Ďuričeková
Master Degree Programme (3), FIT BUT

E-mail: xduric00@stud.fit.vutbr.cz

Supervised by: Tomáš Vojnar
E-mail: vojnar@fit.vutbr.cz

Abstract: In this paper, we propose a design of a value-range analyzer over C programs. First, we
discuss a software vulnerability called buffer overflow and argue that value-range analysis may be
used to prove the absence of buffer overflows. Then, an intuitive view of abstract interpretation, one
of the approaches to value-range analysis, is given. Next, the Code Listener infrastructure, on which
our analyzer is built, is described. After that, we discuss the design of the analyzer.

Keywords: value-range analysis, abstract interpretation, interprocedural analysis, Code Listener,
buffer overflow, control-flow graph, call graph

1 INTRODUCTION

Arguably, one of the most well-known type of software vulnerabilities is a situation called buffer
overflow. A buffer overflow occurs when data are written into a memory buffer that is not large enough
to store these data. Buffer overflows may be exploited by a malicious person to gain control over the
computer system. For example, in November 1988, an infamous Morris worm infected approximately
6000 network-connected hosts which represented 5–10% of the Internet at that time [2]. One of the
primary replication mechanisms of the Morris worm was based on exploiting a buffer overflow in
the fingerd daemon. However, in many cases, buffer overflow vulnerabilities do not need to be
exploited by malicious persons to have disastrous consequences. Indeed, probably the best-known
case of a buffer overflow is the Ariane 5 failure from 1996 where the catastrophe was caused by
a program trying to store a 64-bit number into a 16-bit space [6].

Since both mentioned cases took place more than a decade ago, one might think that at present,
buffer overflows are no longer an issue because programmers are well aware of them. However, the
opposite is true. In the graph from Figure 1, the number of buffer-overflow-related errors in recent
years is shown. Data for this graph are obtained from [1]. Of course, only reported errors are included.
From this graph, it is obvious that the number of buffer overflow vulnerabilities is increasing.

Buffer overflows and other run-time errors, especially in critical software systems, may cause not
only a loss of huge amounts of money but even worse—a loss of human lives. So, a need for a precise
verification of the systems before their usage is consistently increasing. This need caused an emer-
gence of formal verification methods. In summary, formal verification is the use of rigorous methods
to ensure that a system conforms to some precisely expressed notion of functional correctness. There
are several methods of formal verification and each of them is based on a different mathematical ap-
paratus. Model checking, abstract interpretation, theorem proving and static analysis belong to the
best known representatives of these methods [7].

To prove the absence of buffer overflows and other run-time errors, an analysis called value-range
analysis in collaboration with data-flow analysis can be used. Both of them belong to static analysis
techniques. Value-range analysis is based on arguing about the values that a variable may take on
a given program point. For example, it may tell us that a variable i in the statement a[i] = x; can

 0

 100

 200

 300

 400

 500

 600

 700

 800

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

N
u
m

b
er

 o
f

R
ep

o
rt

ed
 B

u
ff

er
 E

rr
o
rs

Year

Figure 1: Number of reported buffer-overflow-related errors in recent years

be from the interval [0,10]. This paper proposes the design of an interprocedural value-range analyzer
for C programs.

2 DESIGN OF A VALUE-RANGE ANALYZER

There exist several approaches to value-range analysis. From all of them, abstract interpretation
was chosen for our analyzer because probably the most successful value-range analyzer deployed in
industry, namely the Value Analysis plug-in [3] from the Frama-C platform, is based on this approach.
Informally, abstract interpretation is a static analysis technique that executes analyzed programs in an
abstract way. During this execution, abstraction is used to preserve only important program properties
and abstracts away all irrelevant details. This is done to speedup the execution and make it converge
on infinite data domains, thus making the analysis computationally feasible.

Our analyzer is built on top of the Code Listener infrastructure (see [4]). Code Listener is a com-
pletely open-source infrastructure intended to simplify construction of tools for static analysis of C
programs. Its long-term goal is wrapping the interfaces of existing code parsers and providing a uni-
fied, well-documented, object-oriented and easy-to-use Application Programming Interface (API)
over these source code parsers. The aforementioned approach of using the existing code parsers to
process source codes instead of leaving the job on static analyzers brings several advantages. Since
code parsing is performed only once, we spare time as well as energy. Moreover, it is worth noting
that every source code the parser is able to parse, the analyzer is able to use as its input. Therefore,
static analyzers cannot fail due to problems with source code parsing. In addition, the Code Listener
infrastructure provides a uniform interface for reporting errors. This means that errors are reported in
the way programmers of static analyzers are accustomed from using the code parser, such as the GCC
compiler (see [8]).

Our value-range analyzer receives program representation in the form of control-flow graphs (CFG)
from Code Listener. A CFG (see [5]) is an oriented graph where nodes are basic blocks and edges
follow the transfer of control. A basic block is a maximal sequence of consecutive statements. The
first instruction in the basic block serves as the only entry point into that block. Similarly, the last
instruction of the basic block is the only exit point from the block. Thus, there are no jumps into the
middle of the block or from the middle of the block.

Our analyzer implements an interprocedural analysis based on [5]. Unlike intraprocedural analysis,
interprocedural analysis is not restricted to a single function by ignoring function calls but it is typi-
cally performed across function boundaries. It means that the calling context of a function influences

data-flow information. For this reason, we need a representation of calling relationships between
functions in the analyzed program named a call graph (CG). A CG (see [5]) is a directed graph where
each node represents a function and edges represent calls between functions. This graph is also pro-
vided by Code Listener.

Intuitively, to compute the values variables may have in each block in the analyzed program, the ana-
lyzer has to use a suitable structure to represent these values. It may seem that it would be appropriate
to use a set of values. However, this approach is very inefficient in terms of performance and fails
for infinite domains. So, instead of a set of values, we use a union of intervals. We call this union
a range. The analyzer is able to perform, for example, arithmetic, logical and comparison operations
over ranges. Although that this approach brings a loss of accuracy, the gained results are an over-
approximation of real results. Therefore, the value-range analysis is sound and efficient at the same
time.

Our analyzer is implemented in the form of a GCC plug-in. So, it can be run by passing a special pa-
rameter to the GCC compiler, which specifies the used plug-in’s name. After performing the analysis,
for each function and each of its basic blocks, value ranges of each variable in the block are printed
to the standard output.

3 CONCLUSION

In this paper, the design of a value-range analyzer for C programs was proposed. We believe that this
analyzer will be useful for detecting buffer overflows and related errors in critical software systems.

ACKNOWLEDGEMENT

This work was partially supported by the BUT FIT grant FIT-S-12-1 and the research plan MSM
0021630528.

REFERENCES

[1] National vulnerability database. http://nvd.nist.gov/home.cfm. [cit. 2013-02-26].

[2] L. Boettger. The Morris Worm. http://www.giac.org/paper/gsec/405/
morris-worm-affected-computer-security-lessons-learned/100954.
[cit. 2013-02-26].

[3] P. Cuoq, V. Prevosto, and B. Yakobowski. Frama-C’s value analysis plug-in. http://
frama-c.com/download/value-analysis-Oxygen-20120901.pdf. [cit. 2013-
01-21].

[4] K. Dudka, P. Peringer, and T. Vojnar. Code listener. http://www.fit.vutbr.cz/
research/groups/verifit/tools/code-listener/. [cit. 2012-01-07].

[5] U. P. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory and Practice. CRC Press,
2009.

[6] G. Lann. An Analysis of the Ariane 5 Flight 501 Failure—A System Engineer-
ing Perspective. http://www.niwotridge.com/Resources/Ariane5Resources/
78890339.pdf. [cit. 2013-02-26].

[7] F. Nielson, H. R. Nielson, and Ch. Hankin. Principles of Program Analysis. Springer, 2005.

[8] GCC team. GCC, the Gnu Compiler Collection. http://gcc.gnu.org/. [cit. 2013-02-26].

