HW/SW CO-DESIGN FOR THE XILINX ZYNQ PLATFORM

Jan Viktorin
Master Degree Programme (2), FIT BUT
E-mail: xvikto03 @stud.fit.vutbr.cz

Supervised by: Pavol Korcek
E-mail: ikorcek @fit.vutbr.cz

Abstract: This work describes a novel approach of HW/SW co-design on the Xilinx Zynq and sim-
ilar platforms. It summarizes interconnections between the Processing System (ARM Cortex-A9
MPCore) and the Programmable Logic (FPGA) to find an abstract and universal way for developing
applications that are partially offloaded into the programmable hardware and that run in the Linux
Operating System. No such universal framework is currently available.

Keywords: Zynq, FPGA, SoC, HW/SW Codesign, Linux, AXI

INTRODUCTION

Today the market of computing systems is led by embedded systems as they are almost everywhere.
They are often equipped with a CPU, peripherals and some application specific units (e. g. graphic
coprocessor). All of them are integrated together on one physical chip called System-on-Chip (SoC).
This work explores a new approach of designing embedded systems using a new generation of SoCs
that consist of a CPU (with peripherals) and Field-Programmable Gate Array (FPGA) logic. The
FPGA logic enables to interface with different peripherals and to integrate application specific units
without affecting the rest of the system. For those new SoCs, and the Xilinx Zynq is one of them, a
framework that simplifies and speeds up the development of an embedded system is introduced.

XILINX ZYNQ

The Xilinx Zynq SoC can be divided into two parts (see the Figure 1): the Processing System (PS)
and the Programmable Logic (PL). [4, p. 23]

The PS consists of

e two ARM Cortex-A9 cores at 667—1000 MHz! with the NEON coprocessor,

o the Snoop Control Unit (SCU) that ensures coherency among L2 cache, L1 caches of both cores
and the Accelerator Coherency Port (connected to the PL),

o the On-Chip Memory (OCM) containing 256 KB of RAM,
e a set of peripherals (SPI, I2C, Gigabit Ethernet, UART, CAN, USB Host, etc.),

e a DDR memory controller and an interrupt controller. [4, p. 28]

The PL is an FPGA (equivalent to the Xilinx Artix-7 or Kintex-7 family) that is tightly interconnected
with the PS. It enables the implementation of hardware accelerators to speed up the processor’s com-
putation. Depending on the version, the PL offers 17,000-218,000 6-inputs look-up tables (LUTs),
60-545 Block RAM memories each with capacity of 36 Kb, 80-900 DSP slices, PCle interface (only
the Kintex-7 compatible devices), multi-gigabit transceivers and others. [3, 2]

'Depends on the selected chip.

Processing System

= | Cortex-A9 Cortex-A9
oo :
- g . Events ' | L1 L1 |
= : © ACP . Scu
- 3 3 OCM | L2

GPs
- E h .
= g .
5: g Peripherals |
= © HPs : I :
= g:ﬁ DDR Memory Controller |
= .

T RN RN RN RN A RN A RN R RN AN

Figure 1: The architecture of Zynq (simplified)

3 INTERFACES BETWEEN PS AND PL
The interfaces between both parts of the Zynq platform can be divided into three categories:

o Low-performance interface is represented by four General Purpose (GP) AXI ports connected
to the internal bus of the PS. Two of them are in the slave and the other two in the master mode.
The PS can access any hardware component in the PL by its address using the slave ports and
the PL part can do bus master operations using the master ports. [4, p. 529, 543-548]

e High-performance interface is represented by four High Performance (HP) AXI ports con-
nected to the main memory of the PS and by the Accelerator Coherency Port (ACP) connected
to the Snoop Control Unit (i.e. L2 cache). All the ports are in master mode and provides 64
bit data bus. The ACP simplifies PS-PL. communication because of the hardware coherency
control. As opposed to the ACP, the HPs need additional software overhead because of explicit
flushing of caches before a transaction is performed. [4, p. 529, 543-548]

e Signalization interface provides ways in which to notify both the PS and PL when an event
occurs. The most traditional way is interrupts. The PL can use 20 dedicated lines to interrupt
the processor. Few of them are of a high priority. There is also the Event Interface. Any Cortex-
A9 core can perform the SEV instruction to send a notification into the SCU. Such an event is
sent to other cores and to the PL. The same type of event can be generated from PL. Similarly
the WFE instruction is used to put the core into a low-power mode while waiting for an event to
occur. The PL can detect when a core is put into the low-power mode.[4, p. 53, 102]

The HPs, GPs and ACP interfaces are implemented using the ABMA AXI, the family of protocols
suitable for creating a bus system in the SoC architectures. The details can be found in [1].

4 FRAMEWORK FOR HW/SW CO-DESIGN ON THE ZYNQ

To simplify development of applications for the Zynq platform (and also for other Reconfigurable
SoC devices) a framework of common hardware components and software drivers is designed. Its
main idea is presented in the Figure 2. The platform dependent parts (PS Driver and PL Endpoint)
ensure DMA transfers and correct signalization between PS and PL. These components are hidden
from the application developer who needs to know just the Accelerators Interface and Userspace in-
terface. The latter one provides a duplex (or in special cases just a simplex) streaming interface and
a configuration bus. The transfers and the interrupts/events generation are hidden from the accelera-
tors. The Userspace interface enables an application to write data into a selected accelerator and read
back the results. The configuration address space of each particular accelerator can be exposed to the

A{P{ | ‘Afpf \...

‘ Y Userspace interface ‘
,‘,.“
Py PS Driver
Lo NN
\Y \Y R
oL Y PL Endpoint
v
[Accelerators Interface ‘
. V1
8
5
2 ‘ACCO ‘ ‘ACC1 ‘ ‘ACCZ H ACC3 ‘ M ACC(n-1) ACCn
8 i i i i I S i L}
Peripheral0 Peripheral1 Peripheral2

Figure 2: The Reconfigurable SoC Bridge design

application using a memory mapping capabilities of the used OS (the Linux OS provides the system
call mmap that is suitable for this purpose).

As a result, the developer uses the concept of streams between the software and hardware and this
enables a faster development of a target application. At the same time, the concept does not depend
on the Xilinx Zynq but can be implemented for any similar platform.

CONCLUSION AND FUTURE WORK

The proposed solution provides a way to develop applications for Reconfigurable SoC devices while
taking advantage of both the software (easier and faster to develop but less efficient) and the hardware
(more complex to develop but much more efficient). It also simplifies the development of hardware
accelerators by introducing a simple interface and hiding the complexity of DMA communication.
The concept is independent on the Xilinx Zynq platform and it is expected to be ported to other
similar systems. The well-specified interfaces allow to apply the Partial Dynamic Reconfiguration of
the soft-core accelerators in the Programmable Logic.

ACKNOWLEDGEMENT

This work was supported by the grant BUT FIT-S-12-1 and Sec6bnet project no. VG20102015022.

REFERENCES

[1] ARM. AMBA AXI and ACE Protocol Specification, 2011. Online:
https://silver.arm.com/download/download.tm?pv=1198016.

[2] Xilinx. 7 Series FPGAs Overview, November 2012. Online: http://www.xilinx.com/
support/documentation/data_sheets/dsl180_7Series_Overview.pdf.

[3] Xilinx. Zyng-7000 All Programmable SoC Overview, August 2012. Online:
http://www.xilinx.com/support/documentation/data_sheets/

ds190-Zyng-7000-Overview.pdf.

[4] Xilinx. Zyng-7000 All Programmable SoC Technical Reference Manual, November 2012.
Online: http://www.xilinx.com/support/documentation/user_guides/
ug585-2yng-7000-TRM. pdf.

https://silver.arm.com/download/download.tm?pv=1198016
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

	Introduction
	Xilinx Zynq
	Interfaces between PS and PL
	Framework for HW/SW co-design on the Zynq
	Conclusion and future work

