
ON STATE-SYNCHRONIZED AUTOMATA SYSTEMS

Jiří Kučera

Master Degree Programme (3), FIT BUT

E-mail: xkucer28@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: This paper introduces a new system of formal models, a state-synchronized automata
system of degree n. The computation in presented system is controlled by control words from control
language, where control word is a sequence of states. Furthermore, this paper shows that for eve-
ry recursively enumerable language there exists an equivalent state-synchronized automata system
consisting of two or more pushdown automata.

Keywords: pushdown automata, automata system, state-synchronized automata system, SCAS, con-
trolled computation, language properties

1 INTRODUCTION

The main motivation in systems of formal models approach is in parallelism and computation distri-
bution, which are popular topics in modern computer science. Several systems of formal models are
studied in [2, 1]. This paper introduces new automata systems such that these systems characterize
the family of recursively enumerable languages.

2 PRELIMINARIES AND DEFINITIONS

In this paper, it is assumed that the reader is familiar with the basics of formal language theory [3].
Let S be a set. Then, the cardinality of S is denoted by card(S). Let Σ be an alphabet. Then, Σ∗

represents the free monoid generated by Σ under the operation of concatenation, with ε as the unit of
Σ∗. Let Σ+ = Σ∗−{ε}. By RE is denoted the family of recursively enumerable languages.

A pushdown automaton, M, is a septuple, M = (Q,Σ,Γ,R,s,S,F), where Q is a finite set of states,
Σ is an input alphabet, Γ is a pushdown alphabet, Q, Σ and Γ are pairwise disjoint, R ⊆ ΓQ(Σ∪

{ε})×Γ∗Q is a finite set of rules, Apa → xq ∈ R
def
⇐⇒ (Apa,xq) ∈ R, s ∈ Q is the initial state, S ∈ Γ

is the initial symbol on pushdown and F ⊆ Q is a set of final states. Let Φ be an alphabet of rule

labels, card(Φ) = card(R), and let φ be a bijection from R to Φ, φ(Apa → xq) = r
def
⇐⇒ r : Apa → xq,

Apa → xq ∈ R∧ φ(Apa → xq) = r
def
⇐⇒ r : Apa → xq ∈ R. Let χ be a word from Γ∗QΣ∗. Then, χ

is a configuration of M. If u ∈ Γ∗, w ∈ Σ∗ and r : Apa → xq ∈ R, then uApaw ⊢M uxqw [r]. Let ⊢∗
M

denote the transitive and reflexive closure of ⊢M. Then, LX(M) = {w ∈ Σ∗ | Ssw ⊢∗
M γq} is a langauge

accepted by M by empty pushdown, if X = ε, γ = ε and q ∈ Q, or by final state, if X = f , γ ∈ Γ∗ and
q∈F . Furthermore, L(M)= Lε(M)∩L f (M) denotes the language accepted by M by empty pushdown
and final state. The definition of a finite automaton, M′, and its terminology are very similar to the
definitions associated with pushdown automaton M above, with the difference, that all parts related
to the pushdown are omitted. So, M′ = (Q′

,Σ′
,R′

,s′,F ′) and L(M′) = {w ∈ Σ′∗ | s′w ⊢∗
M′ f , f ∈ F ′}.

For brevity, the indicies of M are inherited by its components, so if M̂x denotes some pushdown
automaton, then M̂x = (Q̂x, Σ̂x, Γ̂x, R̂x, ŝx, Ŝx, F̂x). Furthermore, let FA and PDA be an abbrevations for
finite automaton and pushdown automaton, respectively.

The state-synchronized automata system of degree n (SCAS(m1,m2,...,mn)), Γ, is an (n+ 1)-tuple, Γ =
(M1,M2, . . . ,Mn,Ψ), where Mi, the ith component of Γ, is PDA or FA, for every i ∈ {1,2, . . . ,n},
n ≥ 1, and Ψ ⊆ Q1Q2 . . .Qn is said to be a control language. Furthermore, the mi ∈ {FA,PDA}, for
every i ∈ {1,2, . . . ,n}, denotes the type of ith component of Γ. In the rest of document, let Γ? i denote
the pushdown alphabet of the ith component of Γ, if mi = PDA, otherwise Γ? i = /0. A configuration

of Γ is an n-tuple (χ1,χ2, . . . ,χn), where χi ∈ Γ∗
? i QiΣ

∗
i , for every i ∈ {1,2, . . . ,n}. Define statew(X) ∈

Q1Q2 . . .Qn as statew((α1q1β1,α2q2β2, . . . ,αnqnβn)) = q1q2 . . .qn, where αi ∈ Γ∗
? i and βi ∈ Σ∗

i , for
every i ∈ {1,2, . . . ,n}. Let Ψ f = Ψ∪F1F2 . . .Fn. If χ = (χ1,χ2, . . . ,χn) and χ′ = (χ′

1,χ
′
2, . . . ,χ

′
n) are

two configurations of Γ, statew(χ)∈Ψ, statew(χ′)∈Ψ f , and χi ⊢Mi
χ′

i, for every i∈ {1,2, . . . ,n}, then
Γ makes a computation step from χ to χ′, written as χ ⊢Γ χ′. Let ⊢∗

Γ denote the transitive and reflexive
closure of ⊢Γ. The language accepted by Γ is defined as L(Γ)= {w∈ Σ1 | (S? 1s1w, S? 2s2, . . . , S? nsn)⊢

∗
Γ

(f1, f2, . . . , fn)}, where S? i = Si, if ith component of Γ is PDA, otherwise S? i = ε, and fi ∈ Fi, for
every i ∈ {1,2, . . . ,n}. The SCAS, Γ, is said to be deterministic, denoted as dSCAS, iff the ⊢Γ has
the properties of the function. The family of languages accepted by SCAS(m1,m2,...,mn) is denoted by
L (SCAS(m1,m2,...,mn)).

Example 2.1: Let Γ = (M,M̂,Ψ) be a dSCAS(PDA,PDA), where

M = ({s,q1,q2,q3, f},{a,b,c},{S,a,b,c},R,s,S,{ f}),

M̂ = ({ŝ, q̂1, q̂2, q̂3, f̂},{a,b,c},{Ŝ, â, b̂, ĉ}, R̂, ŝ, Ŝ,{ f̂ }),
R = {Ssa → Saq1,aq1a → aaq1,aq1b → aq2,aq2b → aq2,aq2c → q3,aq3c → q3,Sq3 → f},

R̂ = {Ŝŝ → Ŝq̂1, Ŝq̂1 → Ŝq̂1, Ŝq̂1 → Ŝb̂q̂2, b̂q̂2 → b̂b̂q̂2, b̂q̂2 → q̂3, b̂q̂3 → q̂3, Ŝq̂3 → f̂},
Ψ = {sŝ,q1q̂1,q2q̂2,q3q̂3}.

It is easy to see, that L(Γ) = {anbncn | n ≥ 1}, which is not a context-free language. The word
aaabbbccc ∈ L(Γ) is accepted in this way:

(Ssaaabbbccc, Ŝŝ)

⊢Γ (Saq1aabbbccc, Ŝq̂1) ⊢Γ (Saaq1abbbccc, Ŝq̂1) ⊢Γ (Saaaq1bbbccc, Ŝq̂1)

⊢Γ (Saaaq2bbccc, Ŝb̂q̂2) ⊢Γ (Saaaq2bccc, Ŝb̂b̂q̂2) ⊢Γ (Saaaq2ccc, Ŝb̂b̂b̂q̂2)

⊢Γ (Saaq3cc, Ŝb̂b̂q̂3) ⊢Γ (Saq3c, Ŝb̂q̂3) ⊢Γ (Sq3, Ŝq̂3)

⊢Γ (f , f̂)

3 RESULTS

Theorem 3.1: For every L ∈ RE, there exists SCAS(PDA,PDA), Γ, such that L(Γ) = L.

Proof of Theorem 3.1. From Theorem 10.3.1 in [3] is clear, that every recursively enumerable lan-
guage, L, can be expressed as L = h(L(MA)∩L(MB)), where MA and MB are deterministic pushdown
automata and h is a homomorphism. Let MA and MB be deterministic PDA. Without loss of generality,
assume that ΣA = ΣB and ΓA = ΓB. Let Γ = (MA′,MB′ ,Ψ) be a SCAS(PDA,PDA) and h be a homomor-
phism from Σ∗

A to Σ∗
A′ , a ∈ ΣA implies h(a) ∈ ΣA′ ∪{ε}, where MA′ , MB′ and Ψ are constructed from

MA and MB in the following way:

1. QX ⊆ QX ′ , FX = FX ′ , ΣX ′ = {h(a) | a ∈ ΣX ∧h(a) 6= ε} and ΓX ′ = ΓX , where X ∈ {A,B},

2. sX ′ := sX and SX ′ := SX , where X ∈ {A,B},

3. ∀p ∈ QA∀q ∈ QB : pq ∈ Ψ,

4. ∀p ∈ QX∀Z ∈ ΓX : Z p → Z p ∈ RX ′ , where X ∈ {A,B},

5. ∀Ap → xq ∈ RX : Ap → xq ∈ RX ′ , where X ∈ {A,B},

6. ∀a ∈ ΣA∀(Ap0a → xp1,Bq0a → yq1) ∈ RA ×RB:

• add new state 〈xp1〉 to QA′ , add new state 〈yq1〉 to QB′ ,

• add new rules Ap0h(a)→ A〈xp1〉 and A〈xp1〉 → xp1 to RA′ ,

• add new rules Bq0 → B〈yq1〉 and B〈yq1〉 → yq1 to RB′ ,

• add new control word 〈xp1〉〈yq1〉 to Ψ.

Thus, for every L ∈ RE, there exists SCAS(PDA,PDA), Γ, such that L(Γ) = L.

Corollary 3.2: L (SCAS(PDA,PDA)) = RE.

Proof of Corollary 3.2. RE⊆L (SCAS(PDA,PDA)) follows from Theorem 3.1, L (SCAS(PDA,PDA))⊆
RE follows from Church-Turing thesis.

Theorem 3.3: For every L ∈ RE, there exists SCAS(PDA,PDA,m1,m2,...,mn), Γ, where mi ∈ {FA,PDA},

for every i ∈ {1,2, . . . ,n}, n ≥ 1, such that L(Γ) = L.

Proof of Theorem 3.3. The automata m1,m2, . . . ,mn are constructed each with one state, which is
initial and final at the same time, and one epsilon rule, representing a loop over that state. The
control language additionally contains such control words that when first two pushdown automata
make a computation step, then the rest automata make an ε-move from initial state to initial state.
Thus, these automata are redundant and the language acceptance depends only on first two pushdown
automata.

Corollary 3.4: L (SCAS(PDA,PDA,m1,m2,...,mn)) = RE, where mi ∈ {FA,PDA}, 1 ≤ i ≤ n, n ≥ 1.

Proof of Corollary 3.4. Direct follows from Theorem 3.3 and Church-Turing thesis.

4 CONCLUSION

In this paper a new type of automata system was presented. It was shown that the presented automata
system with at least two pushdown automata as its components can accept any recursively enumerable
language. The rigorous proofs are omitted due to the requirements on the length of this paper. The
future investigation of presented automata system is to study if the deterministic SCAS has the same
computation power as a nondeterministic SCAS. Also is planned to study other ways of communica-
tion, with possibly restrictions. The presented automata system can be used for example in parallel
compiling, system modeling or linguistics.

REFERENCES

[1] ČERMÁK, Martin. Formal systems based upon automata and grammars. Brno, 2012. PhD the-
sis. Brno University of Technology, Faculty of Information Technology, Department of Infor-
mation Systems.

[2] CSUHAJ-VARJÚ, E., DASSOW, J., KELEMEN, J. and PĂUN, G. Grammar Systems: A Gram-

matical Approach to Distribution and Cooperation. Singapore: Gordon and Breach Science
Publishers, 1994. ISBN 2-88124-957-4.

[3] HARRISON, Michael A. Introduction to Formal Language Theory. Boston (MA, USA):
Addison-Wesley Longman Publishing, 1978. ISBN 0201029553.

