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Abstract: This paper presents an investigation of the possibility of using the fixed-point arithmetic
in the inertial navigation systems. Two square root filtering methods are copared with respect to
conventional Kalman filter and its Joseph’s stabilized form. Main contribution of this research lies in
the evaluation of the minimal effective fixed point arithmetic word length for the pressented Phi angle
error model with considered noise statistics.
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1 INTRODUCTION

The task related to the numerical difficulties of the conventional Kalman filter was investigated many
times over past years. Special attention was paid to the spacecraft navigation and orbit determination
problems as can be seen for example in [1]. The navigation model presented here, which is commonly
used as a core of today’s aircraft navigation algorithms, was not investigated yet (to the best authors’
knowledge). This is probably due to using the floating-point arithmetic in the navigation computers.
However, if we have an application, where using of the fixed-point arithmetic can be advantageous
(e.g. systolic array implementation in the FPGA), than this work can be useful.

2 INERTIAL NAVIGATION ALGORITHM

The inertial navigation algorithm uses four reference frames. These are the inertial frame, earth frame,
local navigation frame(here expressed in the ENU form) and body frame. By using the relations
between these frames we can derive equations which describes the position, velocity and attitude of a
moving target as follows (the time indexes are omitted due to simplification of the notation)
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its velocity. T is the transformation matrix which transforms vectors from the local navigation frame
to the curvilinear coordinates. Cn

b is the direction cosine matrix expressed in terms of the roll, pitch
and yaw angles. This matrix transforms the body frame expressed vectors into the navigation frame.
The terms ba and bg each consist three scalars which represents accelerometers’ and gyroscopes’
biases respectively. They are modelled as the Brownian motion plus a random constant and are used
to correct the accelerometer and gyroscope measurements. The term f b

ib represents the accelerometer



measurement vector and the term Ωb
ib is the skew-symmetric matrix of the gyroscope measurements.

Ωn
ie is the skew-symmetric matrix of the Earth’s angular rate and Ωn

en represents the skew-symmetric
matrix of the angular rate due to translational motion. Finally the term gn is the local gravity vector.

For the navigation equations (1)-(5) can be derived a corresponding error state space model by using
the linear perturbation analysis. This error model is used in the indirect Kalman filter and estimated
state vector is used for correcting the inertial navigation system’s solution which is provided by inte-
grating the equations (1)-(5) through time. If this solution is not corrected than the navigation system
integrates noise given by the gyroscope and accelerometer measurements which results in the diver-
gence and failure of the algorithm. Resulting error model is represented by the continuous linear time
variant stochastic system which contains 15 error states as follows
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All terms are intuitively related as the errors with respect to equations (1)-(5), the three component
vector φ represents the errors in the roll, pitch and yaw angles. Each sub-matrix F are of the dimension
3x3 and represents the state space transition matrix. The terms νa and νg are the accelerometers’ and
gyroscopes’ measurement noises. Further, νba and νbg are their corresponding bias noises. All of
these are assumed as a zero mean uncorrelated Gaussian white noises with known covariances.

The measurement model is expressed as

δz = Hδx+µ (7)

where the term µ = [µr µv]
T . µr and µv are the GNSS position and velocity noises respectively, which

are again assumed as a zero mean uncorrelated Gaussian white noises with known covariances.
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The input measurements for the indirect Kalman filter update residuum are expressed as the difference
between the GNSS observed position and velocity and the navigation system’s solution given by the
equations (1) and (2). More details about INS algorithm can be found in [2].

3 SIMULATION RESULTS

Let us assume that we have a vehicle which moves in the circular trajectory with constant ground
speed 10m.s−1 and at constant altitude 1000m. The accelerometers’ noise std. deviations are given as
σa = 9.81×10−5m.s−3/2 and σba = 6.00×10−5m.s−5/2. For the gyroscopes’ std. deviations we have
σg = 2.91×10−7rad.s−1/2 and σbg = 9.20×10−7rad.s−3/2. The accelerometers’ biases are all three
set to −0.03m.s−2 and gyroscopes’ biases to 2.95× 10−4rad.s−1, where first one of this gyro bias
have negative sign. The GNSS position and velocity measurements have std. deviations σr = 10m
and σv = 4m.s−1 respectively. The accelerometers’ and gyroscopes’ measurements are both sampled
every 0.2s and GNSS measurements every 1s. Simulation is performed in the MATLAB/Simulink
environment with its Fixed-Point Toolbox. The fixed-point arithmetic has 46 bits in the integer part
and 45 bits in the fractional part. The length of the simulation is 1000s.

Due to 3 page limit for this publication, there is no possible to depict all 15 estimated states, so the
figure (1) shows only estimates of the altitude (a), east velocity (b), yaw angle (c) and accelerometers’



x-axis bias (d). Each of these shows GNSS measurements (expect for yaw angle and bias, because
they can not be observed by the GNSS), estimates of the conventional, Joseph’s, Potter square root
and UD decomposed Kalman filters computed in fixed-point (fxp) arithmetic with previously noted
parameters. All these Kalman filter forms can be found in [3]. The conventional Kalman filter com-
puted in floating-point (flp) double precision arithmetic is shown for comparison. As can be seen
from picture (1a) the conventional and Joseph’s algorithms diverge after approximately 50s. This is
caused in the Kalman filter time update step, where the multiplication of the term ΓQΓT ([1] p.28) is
performed with rounding some elements to zero (Γ is the matrix of the second term of the equation
(6) and Q is the process noise covariance matrix related to the noise terms in (6)). This leads to the
situation, when the Kalman filter stops forgetting old data. Measurement update and the system tran-
sition matrix causes that the covariance matrix eigenvalues converges to zero which forces this matrix
to be ill-conditioned (infinite condition number), than estimated altitude error diverges and altitude as
the navigation algorithm state variable too. This phenomena can be overcome with using the square
root filters as figure (1a) shows. Similar conclusions can be made with rest of the depicted variables.
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Figure 1: Estimated altitude (a), east velocity (b), yaw angle (c) and accelerometers’ x-axis bias
(d) for the various Kalman filter implementations.

4 CONCLUSION

This work showed, how the numerical performance of the conventional Kalman filter, applied to the
inertial navigation, can be improved by using the covariance matrix factorizations. The phenomena
of the rounding errors which can cause a divergence of the conventional and Joseph’s form Kalman
filters was described on the example, where a vehicle moves in the circular trajectory.
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