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Abstract: This paper describes one of the methods used for analysis of the brain connectivity – the
graph theory focused on network topology and node significance. Brain connectivity is evaluated
on the functional magnetic resonance imaging (fMRI) data, which is well established modality for
imaging brain activity. Using graph theory in analysis of brain connectivity is a recently developed
approach and offers many possibilities for comparing the results among individuals and characterizing
different types of graphs.
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1 INTRODUCTION

Brain connectivity describes how one neural population (an area of neurons with similar behavior)
relates to the other. Especially in the state of rested mind without any stimuli, particular networks are
activated – they are called the resting-state networks and well-known is the default-mode network.
From that point of view the use of graph algorithms is convenient to consider. Taking the tools from
the complex network analysis and applying them to neural data, we can estimate the plausibility of
individual brain areas (the present of the given area together with its significance in the network)
and describe the topology of the connectivity [1]. This work groups the activated neurons according
to their classification to Brodmann anatomical areas and introduces the software that performs the
network analysis defined above these clusters.

2 BRAIN CONNECTIVITY

This work concentrates on mapping the simultaneous coactivation of brain areas; it does not say
anything about the causality of the relationship, or the direction of influence. This concept is called
functional connectivity and it describes the statistical dependencies between the areas. The structure
of the connectivity – distinct areas connected with mutual statistical dependencies – inspired the
application of the graph theoretical approach, which can reveal some information that cannot be
captured by standard methods.

3 FUNCTIONAL MAGNETIC RESONANCE IMAGING MEASUREMENTS AND DATA PRO-
CESSING

The data to this work are obtained from the measurement of an fMRI experiment. The fMRI mea-
surement in a strong magnetic field records the changes in the ratio of oxygenated and deoxygenated
hemoglobin. The subject may perform a given task, or lay at awake rest depending on the experiment
design. The data pass the preprocessing steps, then they are statistically processed, and the spatial
activity distribution is assessed.



However getting the connectivity data just requires preprocessed scans followed by extraction of the
functional dependencies: the data are parceled to Brodmann areas according to anatomical template,
then a representative of every area is selected and correlation between every two representatives is
computed (a representative is set to be the average of the area activity or its first principal component).
Some studies suggest to perform the correlations between every pair of functional voxels but this
approach is computationally very demanding.

4 USING GRAPH THEORY IN ANALYZING BRAIN CONNECTIVITY

The approach to the neural connectivity data is highly similar to the network analysis previously
applied in different fields (social networks, epidemiology, system biology, etc.); the emphasis is put
on the topology and its description by various metrics. The neural network is classified as a large
scale network. First of all there is a hypothesis that the network is different from the random network.
It was found that the neural graphs have the characteristics of scale-free and small world networks
[1] – shown in the figure 1. The small world network is typical by the large amount of connections
between neighboring nodes and only a few links going to distant nodes, the scale-free network is
characterized by hubs – highly connected nodes.

Figure 1: Random network, scale-free and small world network [2].

The network can be described by many parameters; all of them create the complex information about
the topology. The centrality is determined, among the others, by the degree of the node, betweenness,
closeness or eigenvector centrality [1]. The degree informs about the number of connections to the
node i, betweenness centrality describes the fraction of the shortest paths g jk(i) between nodes j and
k passing through the node i of all the shortest paths g jk. The node with high betweenness centrality
connects different clusters which may not be activated in the same time; the quantity is specified by
the equation 1 [3].
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The closeness centrality informs about closeness of the node to the graph center and does not deal
with the connectedness. The closeness is based on the average path length d between the node i
and every other nodes j and is defined by the equation 2 [3]. The last mentioned parameter, the
eigenvector centrality, specifies how central the node is depending on the centralities of its neighbors.

Evaluation of these parameters for every node in the graph can bring us the information about the node
involvement in the task and its significance. The functional connectivity, therefore also this work,
use only undirected connections. According to the measured correlations between voxel values, the
weight of the connection can be added to the evaluation, or the relationship can be binar – the link is
present or not.



5 IMPLEMENTATION AND CHALLENGES

As mentioned before, this work uses anatomical atlas for parcellation of the cortex. The brain atlas
can be potencial source of errors – the areas in the atlas are statistically created and do not exactly
fit to the given personal data. According to the recently published papers, e.g. [4], wrongly parceled
data can cause highly varied results. On the other hand basing the parcellation on the voxel-wis
correlations of the activity would be more precise but also very difficult to implement in the practice.

The output of this work is a software that uses the fMRI resting-state data and computes and visualizes
the functional network as its output. The correlation matrix is computed from the representatives of
the areas, then (optionally) thresholded, and it is passed to the graph algorithms processing – this work
implements the Brain Connectivity Toolbox [3]. The software presented in this paper uses the Toolbox
functions which work with the binary or weighted networks with undirected links between nodes. The
advantage is that the user can choose the method depending on what he wants to examine. Then the
result (the graph description) is visualized with the aid of the framework The Connectome Viewer [5].
The example of the result is shown in the figure 2 – this figure comes from the Connectome Viewer
dataset.

Figure 2: Visualization of the connectivity by The Connectome Viewer.
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