
COMPARISON STUDY ON MERGING PCAP FILES

Vladimír Veselý

Doctoral Degree Programme (3), FIT BUT

E-mail: xvesel38@stud.fit.vutbr.cz

Supervised by: Miroslav Švéda

E-mail: sveda@fit.vutbr.cz

Abstract: PCAP is nowadays a widely used file format for storing computer network

communications. This paper outlines information about PCAP Next Generation format with focus

on packets precise timing and order. Paper also compares capabilities of different open-source tools

for handling PCAP files and it introduces our own tool for merging multiple PCAPs into the one.

Keywords: merging PCAP files, sorting algorithm, Network Monitor API, PCAPMerger

1 INTRODUCTION

Traffic monitoring is an essential task for network administrators, ISPs or law enforcing agencies.

Unfortunately still no standard exists for packet traces exchange. The most accepted format

nowadays is PCAP – formerly defined as a part of libpcap library. [1]

Often the computer communication is load-balanced and then available traffic captures come from

multiple monitoring probes. We challenge problem how to “put together” captures correctly

whenever we want to successfully trace particular traffic in this kind of environment.

This paper describes basic theory behind, existing tools, current issues and our software

contribution to this topic.

2 STATE OF THE ART

In the following section we briefly mention some important notes on PCAP file format. We also

describe some tools for handling multiple PCAP files – either to simply concatenate their content

or to merge their content (sort them according to timestamp). And lastly we mention issue

regarding handling of timestamp information in PCAP files.

2.1. PCAP NEXT GENERATION FORMAT

PCAP Next Generation format for storing network communication never became more than IETF

draft and currently is maintained outside any IETF working group. (Degioanni, Risso, & Varenni,

2009)

PCAP file consists of multiple blocks sharing the same common format. Blocks could be

categorized into four different groups according to rules of their presence in file: Mandatory (at

least one block must be present), Optional (blocks may appear), Obsolete (usage of blocks is

depreciated) and Experimental (usage is not yet firmly defined but these blocks could be somehow

helpful). The most important for this paper are following blocks:

 Section Header Block (SHB) – it is mandatory and defines the most important parameters

of PCAP file (length of section, byte-order and options).

 Interface Description Block (IDB) – it is mandatory and describes characteristics of

sniffing interface (link type, snaplength, IP address, MAC address, interface speed,

timestamp resolution options with time zone information, applied traffic filters).

 Enhanced Packet Block (EPB) – it is optional and contains single captured packet or its

portion (frame) with all relevant information like interface ID, timestamp, captured length

and packet length, packet data, etc.

 Simple Packet Block (SPB) – it is optional and contains single captured frame or its

portion (frame), with a minimal set of information about it (just packet length and data).

PCAP blocks form tree structure. Physical layout of each PCAP file consists of at least one SHB,

with one IDB and corresponding EPB and SPB packets sniffed on the interface. Typical PCAP file

could have same structure as it is depicted on Figure 1.

SHB

IDB

EPB

SPB

SHB IDB EPB IDB EPB SHB IDB SPB... ...

Section #1 Section #2

Iface #1 sniff Iface #2 sniff Iface #3 sniff

Figure 1: Tree structure and physical layout of PCAP blocks

2.2. EXISTING TOOLS

There exists variety of tools for handling PCAP files differing in what API they use or in which

languages they are written. Some of them are even subparts of deep packet analyzing programs like

Wireshark or Microsoft Network Monitor (MNM). For instance capinfo (part of Wireshark’s

installation) is useful program for displaying all important information about one PCAP file. The

most known and widely used tools for merging multiple PCAP files into the one output file are

Wireshark’s Mergecap (Renfro & Guyton, 2012), FreeBSD’s tcpslice (Fenner, 2012) or MNM’s

NMcap (Long, 2006).

2.3. TIME ORDER ISSUE

Please note that time stamp is carried in PCAP Next Generation format only in EPB. Time

information is stored in EPB in the two 32bit long fields which are interpreted according to the

settings in IDB. They measure time since the beginning of UNIX epoch (1
st
 January 1970) either in

the number of units or in the number of seconds and milliseconds. In any case maximum

achievable precision is 1 millisecond.

Assume that we have PCAP where timestamps in EPB are not growing incrementally. This kind of

PCAP could be created usually in the following ways:

 More than one IDB is present – usually when sniff is done on the multiple interfaces.

 More than one SHB is present – PCAP was created by just simply concatenating two or

even more PCAPs together.

 EPBs are disordered – either by purposely exporting them from the one PCAP in to another

or because of delayed packet processing by capturing engine.

Packets can be received simultaneously on different interfaces or even on different capturing

machines and can have (nearly) same timestamp. However relevant EPB are not stored in

chronological order because of the physical layout in PCAP file.

Now if you use any previously mentioned tool (Mergecap, NMcap or tcpslice) and try to merge

input PCAPs into the chronologically sorted PCAP then you will receive wrong output. Those

programs take from each input PCAP file always the first unprocessed EPB and compare their

timestamps between each other. Hence described algorithm just preserves bad time order of EPBs

in resulting output PCAP. Existing tools simply expect only the basic physical layout of input files

– one SHB, one IDB, and consecutive EPB.

3 CONTRIBUTION

We have decided to solve previously mentioned issue with our own tool – PCAPMerger – and

following section introduces some of the basic implementation and design notes.

Among existing APIs for manipulation with PCAP files (e.g. libpcap/WinPCap, libnet, jNetCap,

etc.) we have chosen to use NetMon which is API build for MNM tool. (Microsoft, 2012)

PCAPMerger is programmed in C# language as a console application. It uses C# wrapper around

NetMon API written in C++. With help of this wrapper we can directly enforce some API

alternations. This comes out very useful when we bend API to handle significantly larger PCAP

files – instead of default 500 MB we are now able to work with files limited only by file system

size restrictions.

Without going to unnecessary details PCAPMerger runs as follows:

1) It processes input file’s list as one of its execution arguments. It checks file’s existence and

verifies that it is in PCAP format. Then it simply concatenates content of all files into

memory. Time complexity of this part: .
2) It closes input files and creates abstract data type frame vector from concatenated data.

Time complexity of this part: .
3) It sorts frame vector according to timestamps of each frame using own delegates sorting

function. Time complexity of this part: .
4) It writes output PCAP file by exporting frames from concatenated data according to their

position in sorted frame vector. Time complexity of this part: .

Thanks to the used sorting mechanism and initial preprocessing of data, our tool solves problem of

the total time order among merging PCAPs.

4 PERFORMANCE TESTING

Only PCAPMerger is capable to correctly merge PCAP files inside which total time order are not

kept. Nevertheless in this section we would like to show performance of our application in general

use-case – merging ordinary PCAP files and motivation behind is to compare performance of our

solution with the existing ones.

To prove PCAPMerger effectiveness we have conducted series of tests focused on measuring CPU

and memory requirements and I/O operations.

All participating programs – Mergecap, NMcap and our PCAPMerger – are compared on the same

PCAP testing set. Testing set consists of the one big PCAP file with communication recorded on

the backbone of the Brno University of Technology. Size of the big file is 1 GB to reflect “usual”

PCAP file handling lengths. Big PCAP is split into ten chronologically consecutive smaller input

PCAP files with the approximately 100 MB each.

All measurements are performed on “average machine” with Intel Core i5 CPU quadcore with 2.4

GHz, installed 4 GB of DDR2 RAM and running Windows 7 x64.

Smaller input files are passed to applications in chronologically reversed order to test the worst

possible sorting case during testing routine. Following charts (Figures 2, 3 and 4) show results of

running the application plotted by Windows Performance Monitor (Microsoft, 2012).

Red thick solid line shows CPU usage, blue thin solid line shows Memory usage and green dashed

line shows I/O data rate (in bytes per second).

Results below are only from the one testing set. Although in reality we conducted more tests and

their results are part of program documentation.

Figure 1: Mergecap performance results

Figure 2: NMcap performance results

Figure 3: PCAPmerger performance result

Running time of each application is: Mergecap ≈ 27 seconds, NMcap ≈ 7 minutes 21 second and

PCAPMerger ≈ 2 minutes 23 seconds. From all three applications only NMcap consumes whole

CPU resources and computer’s memory during run time. Subsequently NMcap forces OS to swap

to page file thus radically decreasing performance. Mergecap has the most excessive I/O data rate.

Content of each output was compared with referential big PCAP file after every test finished. No

differences were detected although sizes of output files slightly varied according to applications

approaches to storing information (e.g. usage of PCAP-NG compression block).

On the one hand tests show that Mergecap finishes PCAP merging task quicker, on the other hand

NMcap is significantly slower than other two applications. It is because of Mergecap simple sorting

logic and well optimized wiretap-1.0.0 library. But unfortunately Mergecap still cannot be used

when dealing with time order issue. Although NMcap and PCAPMerger use the same MNM API,

it seems that PCAPMerger is far more efficient. To conclude whole section PCAPMerger offers

balanced performance (average CPU consumption with I/O data rate and nearly the same memory

requirements as Mergecap) and additionally also solution for previously described problem.

5 CONCLUSION AND FUTURE WORK

In this paper we summarize information about PCAP Next Generation format – namely structure of

file, usage of timestamps in the frame of captured packets timing and ordering. We provide

analysis of existing free tools for merging/concatenating multiple PCAPs into the one file. With

respect to issues of the previous tools we also introduce our own software for PCAP files merging.

We compare performance of our PCAPMerger on the testing set and prove that it is superior to

NMcap which is based on the same API.

We plan to continue our work on PCAPMerger performance. We expect improvements with other

alternations of the Network Monitor API or further experiments with different sorting algorithm

approaches. Our long term goal is to make PCAPMerger independent on any API and write own

PCAP handling methods to provide best possible performance. We also plot to include

PCAPMerger functionality into more general application working above network flows.

Source codes of PCAPMerger application importable to Visual Studio 2010 could be downloaded

from: http://www.fit.vutbr.cz/~ivesely/prods.php.en.

ACKNOWLEDGEMENT

This work was partially supported by the BUT FIT grant MV-VG20102015022 “Modern Tools for

Detection and Mitigation of Cyber Criminality on the New Generation Internet”.

REFERENCES

[1] Carstens, T.: TCPDump&libpcap. [Online]. HYPERLINK "http://www.tcpdump.org/"

http://www.tcpdump.org/ . February, 2012.

[2] Degioanni, L.; Risso, F.; Varenni, G.: PCAP Next Generation Dump File Format. [Online].

HYPERLINK "http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html"

http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html . July, 2009.

[3] Renfro, S.; Guyton, B.: Mergecap - The Wireshark Network Analyzer 1.5.0. [Online].

HYPERLINK "http://www.wireshark.org/docs/man-pages/mergecap.html"

http://www.wireshark.org/docs/man-pages/mergecap.html . February, 2012.

[4] Fenner, B.: The tcpslice project. [Online]. HYPERLINK

"http://sourceforge.net/projects/tcpslice/" http://sourceforge.net/projects/tcpslice/ . February,

2012.

[5] Long, P.: NMCap: the easy way to Automate Capturing. [Online]. HYPERLINK

"http://blogs.technet.com/b/netmon/archive/2006/10/24/nmcap-the-easy-way-to-automate-

capturing.aspx" http://blogs.technet.com/b/netmon/archive/2006/10/24/nmcap-the-easy-

way-to-automate-capturing.aspx . October, 2006.

[6] Microsoft: Network Monitor - Site Home. [Online]. HYPERLINK

"http://blogs.technet.com/b/netmon/" http://blogs.technet.com/b/netmon/ . February, 2012.

[7] Microsoft: Performance and Reliability Monitoring Step-by-Step Guide for Windows Server

2008. [Online]. HYPERLINK "http://technet.microsoft.com/en-us/library/cc749249.aspx"

http://technet.microsoft.com/en-us/library/cc749249.aspx . February, 2012.

http://www.fit.vutbr.cz/~ivesely/prods.php.en

