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Abstract: In this paper, we propose to model dependencies among binary variables in semantic
tagging and similar tasks by Restricted Boltzmann Machines (RBM). In the proposed approach, Gibbs
sampling allows learning RBMs even on data with large portion of missing values. Similarly, Gibbs
sampling is used to estimate marginal probabilities of tags. The results show that the tag predictions
become more certain with higher portion of known tags, and that the approach could be used for tag
suggestion or semi-supervised learning.
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1 INTRODUCTION

Automatic tagging of image data has wide applications ranging from supporting search in multi-media
databases [7] to various classification tasks (e.g. video genre recognition [4]) and semi-supervised
annotation [1]. Existing approaches to estimating probability of presence of semantic categories in
images [7] rely mostly on content-based features extracted from the image to provide information
about present classes. Such approaches are suitable for fully automatic scenarios where no user input
is required. However, in certain scenarios the user input is available and, in fact, needed to provide
reliable enough results. An example of such scenario is tagging of images uploaded by users to online
multi-media repositories - current automatic tagging systems do not provide results reliable enough
for this task. Another example is semi-supervised learning of the semantic classification system itself.

In this paper, we propose a novel approach which is able to model dependencies between semantic
tags, as well as the dependency of tags on content-based features. By using Conditional Restricted
Boltzmann Machines, we model the dependencies in an unified probabilistic framework which allows
unknown variables (presence of semantic tags) to be estimated by Gibbs sampling. The proposed
approach uses content-based features for a first rough estimate of tag probability. These estimates
can be subsequently refined by making some of the tag variables visible (a user selects a presence or
absence of some tags by hand).

The proposed approach is well suited for example for tagging of image data when uploading images
to a database such as Flickr. There it can be used to provide suggestions of tags appropriate for the
images from which the user picks the correct ones. The suggestions become more accurate as the
user hand-selects some of the tags for the image.

A short introduction to Restricted Boltzmann Machines (RBM) and their conditional variant (CRBM)
is given in Section 2 respective Section 3. Section 4 then introduces a method for learning RBM in
cases when large portion of variables in training data is not known. Experiments and their results are
discussed in Section 5. Finally, the paper is concluded in Section 6.
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Figure 1: Restricted Boltzmann Machine - bipartite graph of visible and hidden variables linked
by bidirectional connections.

2 RESTRICTED BOLTZMANN MACHINE

Restricted Boltzmann Machine [2] is an undirected bipartite graphical model. It defines a probability
distribution over a vector of visible variables v and a vector of hidden variables h as shown in Figure 1.
In this paper we consider the simplest version of RBM where v and h contain both binary variables.
The visible variables v are fully defined by states of the hidden variables h and vice versa.

The joint probability over v and h is defined as

p(v,h) =
exp(−E(v,h))

Z
, (1)

where Z is a normalization constant and E is energy function given by

E(v,h) =−v>Wh−v>bv−h>bh, (2)

where (W ) is a matrix of weights between elements of v and h, and bv and bh are biases of visible
respective hidden variables. Dependencies between the variables are expressed as

p(h|v) = σ(Wv−bv) and p(v|h) = σ

(
W>h−bh

)
, (3)

where σ() is a sigmoid function.

As a generative model, RBM could be trained using maximum likelihood. However, derivatives of
the likelihood are intractable. Hinton [2] introduced a practical approximation called Contrastive
Divergence (CD). The CD algorithm computes gradients for optimization as

∇W = 〈vh〉data−〈vh〉recon (4)

∇bv = 〈v〉data−〈v〉recon (5)

∇bh = 〈h〉data−〈h〉recon, (6)

where 〈.〉data are expectations with respect to the distribution of data and 〈.〉recon are expectations with
respect to the distribution of reconstructed data. The reconstructed data is obtained by starting with a
data vector on visible variables, and alternatively sampling from distribution p(h|v) and then p(v|h)
(Equation 3).

In the context of Image tag suggestion we use RBM as a generative model which captures dependen-
cies between the semantic tags - each visible variable from v indicates presence of a semantic class
in an image.



3 CONDITIONAL RESTRICTED BOLTZMANN MACHINE

Conditional Restricted Boltzmann Machine [8] (CRBM) is an extension of RBM which models joint
distribution of v and h conditioned on data c - p(v,h|c). In CRBM, the Equations 3 are extended by
computing the biases as

bv = Ac+a and bh = Bc+b. (7)

In CRBM, the CD gradient of W is still computed according to Equation 4. The other gradients are:

∇A = 〈vc〉data−〈vc〉recon (8)

∇B = 〈hc〉data−〈hc〉recon (9)

∇a = 〈v〉data−〈v〉recon (10)

∇b = 〈h〉data−〈h〉recon. (11)

For tag suggestion, the conditioning data c are content-based features extracted from an image or
other media.

4 HANDLING UNOBSERVED VISIBLE DATA

In the context of image tag suggestion, the task of RBM and CRBM is to provide marginal proba-
bilities of unobserved tags which constitute the visible variables v as more and more tags become
observed (by actions of a user). Due to a large number of possible tags (hundreds or thousands), it
is not possible to obtain a large training dataset where presence or absence of all tags for all images
would be known. Such dataset has to have sparse annotations and the learning algorithm has to handle
the unobserved tags.

Estimation of probabilities of unobserved visible variables can be achieved by using Gibbs sampling
to draw several samples from the RBM distribution and computing means of marginal distributions
E(p(vi)) using the samples. Gibbs sampling starts by assigning random values to unobserved vari-
ables and a sample is obtained by iterating between computing p(h|v) (Equation 3) and sampling
from it, followed by computing p(v|h).

Several methods for handling missing training data in the context of RBM were proposed. Single
missing value can be easily filled by sampling from its exact conditional distribution (it is known for
single unobserved variable). More missing values can be treated in the same way as other parame-
ter [3] if they are updated often during learning. This approach is efficient only on training sets of
limited size. Salakhundinov et al. [6] introduce a radical way of dealing with missing values by using
RBM’s with different numbers of visible units for different training cases. This approach is able to
handle very sparse data, but it no longer produces a single RBM model.

In our work, we decided to use Gibbs sampling to fill the unobserved values in the training data.
For the CD gradients (Equation 4), the data means 〈.〉data have to be computed. This can be done by
drawing samples from the distribution of the unobserved visible variables conditioned on the observed
visible variables. This distribution is not known during learning of the RBM model. However, current
imperfect RBM model can be used instead as an approximation. When a sample from the distribution
of the visible data is obtained, the CD algorithm proceeds exactly as described in Section 2 and
Section 3.

5 EXPERIMENTS AND RESULTS

We tested the proposed approach on a training dataset for semantic indexing task from TRECVID
2011 evaluations. The dataset consists of 400 hours of video from which over 260 thousand images



Figure 2: Dependency of average Precision of tag suggestion on number of hidden units (left) and
on regularization weight decay parameter (higher values equal to stronger regularization).

(key-frames) were extracted. 345 semantic classes were annotated by active learning [1]. Total 14M
shots-level annotations were collected (approximately 16%), from which only 400 thousand are pos-
itive. On average, there is over 1100 positive and 42 thousand negative annotations for each class.
Examples of the classes are Actor, Airplane Flying, Bicycling, Canoe, Doorway, Ground Vehicles,
Stadium, Tennis, Armed Person, Door Opening, George Bush, Military Buildings, Researcher, Syn-
thetic Images, Underwater and Violent Action.

The conditional content-based features are Bag-Of-Visual-Words representations (BOW [5]). The
particular feature extraction method for BOW consists of dense sampling, RGB-SIFT descriptor, and
soft assignment to BOW [4]. The dimensionality of the content-based features is 4098.

For the experiments, the TRECVID dataset was divided into two parts. First 200 thousand key-frames
were used for training and from the remaining 60 thousand key-frames 20 thousand were randomly
selected for testing. All tests were performed for probabilities 10%, 30% and 60% that the annotated
tags are known - known tags were sampled randomly for each key-frame. Note that even for 60%,
only small number of tags per key-frame are known due to sparse initial annotation. Average precision
(across all tags) is used as an evaluation measure.

The first experiment explored the effect of dimension of the hidden layer (results shown in Figure 2).
The optimal strength of L2 regularization (weight decay) was selected by grid search using cross-
validation. The training process iterated twenty times over the training set, and the marginal proba-
bilities of tags were estimated using fifty samples. The results show that there is a positive correlation
between the dimension of the hidden layer and average precision in all percentages of known anno-
tations (more notably for higher percentages). A turning point in this correlation can be seen at 64
hidden units. This can be interpreted as a saturation point and adding more hidden units would result
in lower precisions due to overfitting. Most importantly, the results show that the proposed approach
can utilize the information provided by the known tags, and that the average precision significantly
improves with the number of known tags.

The second test measured dependency of precision of CRBM tag suggestion on a regularization pa-
rameter for the conditional data (regularization of A and B from Equation 7). The weight decay
parameter was set to 0.00055 and the dimension of hidden layer was set to 64 according to results of
the first experiment. Figure 2 shows that the highest precisions were achieved when the weight decay
parameter for conditional data was set to the highest value 0.1 (when the contribution of the condi-
tional data was reduced the most). In fact, the best achieved results are worse compared to simple
RBM. The reason could be that the large number of CRBM parameters (namely matrix A and B) can



not be reliably fitted using the CD algorithm when large number of training data is missing.

6 CONCLUSIONS

We have proposed an approach which uses RBM to model dependencies among binary variables in
semantic tagging and possibly similar tasks. We have shown that RBMs can be efficiently learned by
filling unobserved data using Gibbs sampling even when large portion of the training data is miss-
ing. Further, we have proposed to use Gibbs sampling to infer marginal probabilities of unobserved
data variables in order to predict presence of tags based on other known tags. The results show that
the predictions become more certain with higher portion of known tags. The RBM with the pro-
posed inference could be used to suggest semantic tags for image annotation, or in active learning
frameworks.

In addition, we have shown how CRBM can integrate content-based features and tag dependencies
in a single probabilistic model. However, the experiments suggest that CRBM is not able to utilize
the BOW content-based features in the semantic image tagging task. One possible reason is the high
number of parameters in the model. Reducing dimensionality of the content-based features could
improve results as it would reduce the number of model parameters. Alternatively, logistic regression
could be used to pre-train the conditional part of CRBM. Deep belief network [3] could be constructed
to improve performance over the one layer RBM.
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