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Abstract: The present paper discusses normal forms of one-sided random context grammars. More
specifically, it (1) gives an overview of previously established normal forms and (2) establishes three
new normal forms. All normal forms are established in terms of one-sided random context grammars
with and without erasing rules. A discussion of an open problem concludes the paper.
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1 INTRODUCTION

A formal grammar is in a normal form (see [4]) if all its rules satisfy some prescribed uniform form.
If the grammar posses more sets of rules, like in grammar systems (see [2]), conditions may also be
placed upon the identity or disjointness of these sets. Indisputably, normal forms represent a crucially
important part of formal language theory as a whole. Indeed, from a theoretical viewpoint, they are
useful in simplifying proofs (see [3, 4]). From a practical viewpoint, they fulfill a useful role in
parsing (see [1, 5]).

In the present paper, we discuss this important topic in terms of one-sided random context grammars.
Recall that a one-sided random context grammar (see [6]) represents a variant of a random context
grammar (see [3]). In this variant, a set of permitting symbols and a set of forbidding symbols are
attached to every rule, and its set of rules is divided into the set of left random context rules and the
set of right random context rules. A left random context rule can rewrite a nonterminal if each of its
permitting symbols occurs to the left of the rewritten symbol in the current sentential form while each
of its forbidding symbols is absent therein. A right random context rule is applied analogically except
that the symbols are examined to the right of the rewritten symbol. Recall that one-sided random
context grammars are computationally complete (see Theorem 3 in [6]), and if erasing rules are not
permitted, they characterize the family of context-sensitive languages (see Theorem 2 in [6]).

The goal of this paper is twofold. It (1) gives an overview of previously established normal forms
of one-sided random context grammars and (2) establishes three new normal forms. The first new
normal form represents an analogy of the Chomsky normal form for context-free grammars (see [4]).
The second new normal form requires that each rule has its permitting or forbidding context empty—
that is, no rule can both permit and forbid symbols. In the third new normal form, the sets of left
and right random context rules are disjoint. All normal forms are established in terms of one-sided
random context grammars with and without erasing rules.

The paper is organized as follows. Section 2 gives all the necessary terminology. Then, Section 3
establishes the abovementioned normal forms of one-sided random context grammars. In the conclu-
sion of this paper, Section 4 states an open problem.



2 PRELIMINARIES AND DEFINITIONS

We assume that the reader is familiar with formal language theory (see [3, 4]). For a set Q, card(Q)
denotes the cardinality of Q, and 2Q denotes the power set of Q. For an alphabet V , V ∗ represents
the free monoid generated by V . The unit of V ∗ is denoted by ε. Set V+ =V ∗−{ε}. For x ∈V ∗, |x|
denotes the length of x, and alph(x) denotes the set of symbols occurring in x.

Definition 1 (see [6]). A one-sided random context grammar is a quintuple

G =
(
N,T,PL,PR,S

)
where N and T are two disjoint alphabets, S ∈ N, and

PL,PR ⊆ N×
(
N∪T

)∗×2N×2N

are two finite relations. Set V = N ∪T . The components V , N, T , PL, PR, and S are called the total
alphabet, the alphabet of nonterminals, the alphabet of terminals, the set of left random context rules,
the set of right random context rules, and the start symbol, respectively. Each (A,x,U,W ) ∈ PL∪PR

is written as bA→ x, U , Wc throughout this paper. For bA→ x, U , Wc ∈ PL, U and W are called the
left permitting context and the left forbidding context, respectively. For bA→ x, U , Wc ∈ PR, U and
W are called the right permitting context and the right forbidding context, respectively. If bA→ x, U ,
Wc ∈ PL ∪PR implies that |x| ≥ 1, then G is said to be propagating. The direct derivation relation
over V ∗ is denoted by⇒ and defined as follows. Let u,v ∈ V ∗ and bA→ x, U , Wc ∈ PL∪PR. Then,
uAv⇒ uxv in G if and only if

bA→ x,U,Wc ∈ PL,U ⊆ alph(u), and W ∩ alph(u) = /0

or
bA→ x,U,Wc ∈ PR,U ⊆ alph(v), and W ∩ alph(v) = /0

Let⇒n and⇒∗ denote the nth power of⇒, for some n≥ 0, and the reflexive-transitive closure of⇒,
respectively. The language of G is denoted by L(G) and defined as

L
(
G
)
=
{

w ∈ T ∗ | S⇒∗ w
}

Next, we illustrate the previous definition by an example.

Example 1. Consider the one-sided random context grammar

G =
(
{S,A,B, Ā, B̄},{a,b,c},PL,PR,S

)
where PL contains the following four rules:

bS→ AB, /0, /0c

bB→ bB̄c,{Ā}, /0c

bB̄→ B,{A}, /0c

bB→ ε, /0,{A, Ā}c

and PR contains the following three rules:

bA→ aĀ,{B}, /0c bĀ→ A,{B̄}, /0c bA→ ε,{B}, /0c



It is rather easy to see that every derivation that generates a non-empty string of L(G) is of the form

S ⇒ AB
⇒ aĀB
⇒ aĀbB̄c
⇒ aAbB̄c
⇒ aAbBc
⇒∗ anAbnBcn

⇒ anbnBcn

⇒ anbncn

where n≥ 1. The empty string is generated by S⇒ AB⇒ B⇒ ε. Based on the previous observations,
we see that G generates the non-context-free language {anbncn | n≥ 0}.

3 NORMAL FORMS OF ONE-SIDED RANDOM CONTEXT GRAMMARS

In this section, we give an overview of previously established normal forms of one-sided random
context grammars, and establish the three new normal forms already mentioned in Section 1.

3.1 PREVIOUSLY ESTABLISHED NORMAL FORMS

To our knowledge, only a single normal form of one-sided random context grammars has been estab-
lished. In this normal form, the set of left random context rules coincides with the set of right random
context rules.

Theorem 1 (see [6]). Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Then, there
is a one-sided random context grammar, H = (N′, T , P′L, P′R, S), such that L(H) = L(G) and P′L = P′R.
Furthermore, if G is propagating, then so is H.

3.2 NEW NORMAL FORMS

Now, we establish three new normal forms of one-sided random context grammars. The first new
normal form represents an analogy of the Chomsky normal form for context-free grammars (see [4]).

Theorem 2. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Then, there is a one-
sided random context grammar, H = (N′, T , P′L, P′R, S), such that L(H) = L(G) and bA→ x,U,Wc ∈
P′L∪P′R implies that x ∈ N′N′∪T ∪{ε}. Furthermore, if G is propagating, then so is H.

Proof. This theorem can be established by analogy with the well-known conversion of context-free
grammars into the Chomsky normal form (see Algorithm 5.1.4.1.1 in [4]). Due to space requirements,
a rigorous proof of this simple theorem is left to the reader.

In the second new normal form, each rule has its permitting or forbidding context empty.

Theorem 3. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Then, there is a one-
sided random context grammar, H = (N′, T , P′L, P′R, S), such that L(H) = L(G) and bA→ x,U,Wc ∈
P′L∪P′R implies that U = /0 or W = /0. Furthermore, if G is propagating, then so is H.

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Set V = N∪T and

F =
{
〈r, i,d〉 | r = bA→ x,U,Wc ∈ Pd ,d ∈ {L,R}, i ∈ {1,2}

}
Without any loss of generality, we assume that F∩V = /0. Construct H = (N′, T , P′L, P′R, S) as follows.
Initially, set N′ = N∪F , P′L = /0, and P′R = /0. Perform (1) and (2), given next.



(1) for each r = bA→ x,U,Wc ∈ PL,

(1.1) add bA→ 〈r,L,1〉, /0,Fc to P′R;

(1.2) add b〈r,L,1〉 → 〈r,L,2〉, /0,W ∪Fc to P′L;

(1.3) add b〈r,L,2〉 → x,U, /0c to P′L;

(2) for each r = bA→ x,U,Wc ∈ PR,

(2.1) add bA→ 〈r,R,1〉, /0,Fc to P′L;

(2.2) add b〈r,R,1〉 → 〈r,R,2〉, /0,W ∪Fc to P′R;

(2.3) add b〈r,R,2〉 → x,U, /0c to P′R.

A single rule from PL and PR is simulated in three steps by rules introduced in (1) and (2), respectively.
As we cannot check both the presence and absence of symbols in a single step, we split this check
into two consecutive steps. Clearly, L(G)⊆ L(H), so we only prove that L(H)⊆ L(G).

Observe that if we consecutively apply the three rules from (1) in H, then we can apply the original
rule in G. Likewise for the rules introduced in (2). Therefore, it remains to be shown that H cannot
generate false sentences by invalid intermixed simulations of more than one rule of G at a time.
In what follows, we consider only simulations of rules from PL; the situation for rules from PR is
analogical.

Let us consider a simulation of some r = bA→ x,U,Wc ∈ PL. Observe that the only situation where
a false simulation may occur is that after a rule from (1.2) is applied, another simulation takes places
which transforms a nonterminal to the left of 〈r,L,2〉 that is not in U into a nonterminal that is in U .
To investigate this possibility, set V ′ = N′ ∪T and consider any successful derivation in H, S⇒∗ z,
where z ∈ L(H). This derivation can be written in the form

S⇒∗ w⇒ y⇒∗ z

where w = w1〈r,L,1〉w2, y = w1〈r,L,2〉w2, and w1,w2 ∈ V ′∗. Since w ⇒ y in H by b〈r,L,1〉 →
〈r,L,2〉, /0,W ∪Fc, introduced to P′L in (1.2) from r,

alph(w1)∩ (W ∪F) = /0

From the presence of 〈r,L,2〉, no rule from (1) is now applicable to w1. Let w1 = w′1Bw′′1 and bB→
〈s,R,1〉, /0,Fc ∈ P′L, introduced in (2.1) from some s = bB→ v,X ,Yc ∈ PR such that B /∈U and

alph(v)∩
(
U− alph(w1)

)
6= /0

(This last requirement implies that by successfully simulating s prior to r, we end up with an invalid
simulation of r.) Then,

w′1Bw′′1〈r,L,2〉w2⇒ w′1〈s,R,1〉w′′1〈r,L,2〉w2

in H. Since 〈s,R,1〉 cannot be rewritten to 〈s,R,2〉 by a rule from (2.2) (〈r,L,2〉 is present to the right
of 〈s,R,1〉), we can either (a) correctly finish the simulation of r by rewriting 〈r,L,2〉 to x (recall that
B /∈U) or (b) rewrite some nonterminal in w′1 or w′′1 . However, observe that in (b), we end up in the
same situation as we are now.

Based on these observations, we see that no invalid intermixed simulations of more than one rule of G
at a time are possible in H. Hence, L(H)⊆ L(G), so L(H) = L(G). Clearly, bA→ x,U,Wc ∈ P′L∪P′R
implies that U = /0 or W = /0. Furthermore, observe that if G is propagating, then so is H. Thus, the
theorem holds.



The third new normal form represents a dual normal form to the one in Theorem 1. Indeed, we
next show that every one-sided random context grammar can be turned into an equivalent one-sided
random context grammar with the sets of left and right random context rules being disjoint.

Theorem 4. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Then, there is a
one-sided random context grammar, H = (N′, T , P′L, P′R, S), such that L(H) = L(G) and P′L∩P′R = /0.
Furthermore, if G is propagating, then so is H.

Proof. Let G = (N, T , PL, PR, S) be a one-sided random context grammar. Construct H = (N′, T , P′L,
P′R, S), where

N′ = N∪
{

L,R
}

;

P′L =
{
bA→ x,U,W ∪{L}c | bA→ x,U,Wc ∈ PL

}
;

P′R =
{
bA→ x,U,W ∪{R}c | bA→ x,U,Wc ∈ PR

}
.

(Without any loss of generality, we assume that {L,R}∩ (N ∪T ) = /0.) Observe that the new nonter-
minals L and R cannot appear in any sentential form. Therefore, it is easy to see that L(H) = L(G).
Furthermore, observe that if G is propagating, then so is H. Since P′L∩P′R = /0, the theorem holds.

4 CONCLUDING REMARKS

We conclude the paper by suggesting several open problem areas. Let G = (N, T , PL, PR, S) be a
one-sided random context grammar, and consider the following three normal forms:

I. either PL = /0 or PR = /0;

II. bA→ x,U,Wc ∈ PL∪PR implies that card(U)+ card(W )≤ 1;

III. PR = /0 and bA→ x,U,Wc ∈ PL implies that W = /0.

Can we turn G into an equivalent grammar in any of the abovementioned forms?
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