
A NEW NORMAL FORM FOR PROGRAMMED GRAMMARS
WITH APPEARANCE CHECKING

Lukáš Vrábel
Doctoral Degree Programme (2), FIT BUT

E-mail: xvrabe01@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: In the present paper, we discuss programmed grammars with appearance checking. We in-
vestigate the effect of the number of rules with more than one successor in success and/or failure field
on generative power of the programmed grammars. We prove that for every programmed grammar,
there is an equivalent programmed grammar where only a single rule has more than one successor in
both success and failure fields.

Keywords: Programmed grammar with appearance checking, normal form, successor, nondetermin-
ism

1 INTRODUCTION

In the formal language theory, programmed grammars have been thoroughly investigated (see [1,
2, 4–6, 8, 10] for recent studies). Although various properties of these grammars have been well
established, the effect of rules with more than one successor has not been investigated to its full
extent. In [1] and [2], it is proved that (a) to generate an infinite language, there has to be at least
one rule with more than one successor, and (b) any programmed grammar can be converted to an
equivalent programmed grammar with every rule having at most two successors. In [10], we proved
that each programmed grammar can be converted to an equivalent programmed grammar with only
one rule with more than one succesor, and in [8], we used this normal form to prove that we cannot
limit overall number of successors.

In this paper, we continue the study of successor nondeterminism in programmed grammars. Normal
forms significantly simplify the investigation of some properties of grammars and their corresponding
languages. Furthermore, these forms make the application and implementation easier. Therefore, we
extended the notions and normal form from [10] to programmed grammars with appearance check-
ing, thus solving some of the open problems presented in [10] and [8]. Specifically, we extend the
definition of one-ND rule normal form (ND stands for nondeterministic), where at most one rule has
more than one successor, to programmed grammars with appearance checking. Then we prove that
every programmed grammar with appearance checking can be converted to this form.

2 PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with the theory of formal languages (see [7]), including
the theory of regulated rewriting (see [3]). For a set, Q, card(Q) denotes the cardinality of Q, and 2Q

denotes the power set of Q. For an alphabet, V , V ∗ represents the free monoid generated by V under
the operation of concatenation. The unit of V ∗ is denoted by ε. Set V+ =V ∗−{ε}; algebraically, V+

is thus the free semigroup generated by V under the operation of concatenation.

Definition 1. A programmed grammar with appearance checking (see [3, 9]) is a quintuple, G = (N,
T , S, Ψ, P), where N is the alphabet of nonterminals, T is the alphabet of terminals, N∩T = /0, S ∈ N



is the start symbol, Ψ is the alphabet of rule labels, and P ⊆Ψ×N× (N ∪T )∗×2Ψ×2Ψ is a finite
relation such that card(Ψ) = card(P), and for (r,A,x,σr,φr),(q,B,y,σq,φq) ∈ P, if (r,A,x,σr,φr) 6=
(q,B,y,σq,φq), then r 6= q.

Elements of P are called rules. Instead of (r,A,x,σr,φr)∈ P, we write br : A→ x,σr,φrc ∈ P through-
out this paper. For br : A→ x,σr,φrc ∈ P, A is referred to as the left-hand side of r, and x is referred
to as the right-hand side of r. Let V = N ∪ T be the total alphabet. G is propagating if every
br : A→ x,σrc ∈ P satisfies x ∈V+. Rules of the form br : A→ ε,σrc are called erasing rules.

The relation of a direct derivation, symbolically denoted by ⇒, is defined over V ∗×Ψ as follows:
for (x1,r),(x2,s) ∈ V ∗×Ψ, (x1,r)⇒ (x2,s) (or (x1,r)⇒G (x2,s), if there is a danger of confusion),
where br : A→ w,σr,φrc, if and only if either

• x1 = yAz, x2 = ywz, and s ∈ σr, or

• x1 = x2, A does not occur in x1, and s ∈ φr.

Let br : A→ w,σr,φrc ∈ P. Then, σr is called the success field of r and φr is called the failure field of
r. Let⇒n,⇒∗, and⇒+ denote the nth power of⇒, for some n ≥ 0, the reflexive-transitive closure
of⇒, and the transitive closure of⇒, respectively. Let (S,r)⇒∗ (w,s), where r,s ∈Ψ and w ∈ V ∗.
Then, (w,s) is called a configuration. The language generated by G is denoted by L(G) and defined
as L(G) = {w ∈ T ∗ | (S,r)⇒∗ (w,s), for some r,s ∈Ψ}. �

Definition 2. Let G = (N, T , S, Ψ, P) be a programmed grammar. G is in the one-ND rule normal
form (ND stands for nondeterministic) if at most one br : A→ x,σr,φrc ∈ P satisfies card(σr)≥ 1 or
card(φr)≥ 1, and every other br : A→ x,σrc ∈ P satisfies card(σr)≤ 1 and card(φr)≤ 1. �

3 CONVERSION OF PROGRAMMED GRAMMARS INTO ONE-ND NORMAL FORM

Algorithm 1. Conversion of any programmed grammar to the one-ND rule normal form.

Input: A programmed grammar G = (N, T , S, Ψ, P).

Output: A programmed grammar in the one-ND rule normal form, G′ = (N′,T,S′,Ψ′,P′), such that
L(G′) = L(G).

Method: Initially, set:

N′ = N∪{#,S′}∪{〈rσ〉,〈rφ〉 | r ∈Ψ};
Ψ′ = Ψ∪{X} with X being a new unique symbol;
P′ = {bX : #→ #, /0,φXc} with φX initially set to /0.

Now, apply the following three steps:

(1) for each br : A→ ω,σr,φrc ∈ P:

(1.1) add br : A→ ω,{rσ},{rφ}c to P′,
(1.2) add brσ : #→ 〈rσ〉,{X}, /0c to P′, and rσ to Ψ′,
(1.3) add brφ : #→ 〈rφ〉,{X}, /0c to P′, and rφ to Ψ′,
(1.4) for each q ∈ σr, add b〈rσBq〉 : 〈rσ〉 → #,{q}, /0c to P′, 〈rσBq〉 to Ψ′ and to φX ;
(1.5) for each q ∈ φr, add b〈rφBq〉 : 〈rφ〉 → #,{q}, /0c to P′, 〈rφBq〉 to Ψ′ and to φX ;

(2) for each br : S→ ω,σr,φrc ∈ P′:

(2.1) add brs : S′→ #S,{r}, /0c to P′,



(2.2) add rs to Ψ′;
(3) for each b〈pBq〉 : 〈p〉 → #,{q}, /0c ∈ P′ satisfying 〈pBq〉 ∈ φX :

(3.1) add b〈pBε q〉 : 〈p〉 → ε,{q}, /0}c to P′,
(3.2) add 〈pBε q〉 to both Ψ′ and φX

Lemma 1. Algorithm 1 is correct.

Proof. Clearly, the algorithm always halts and G′ is in the one-ND rule normal form. To establish
L(G) = L(G′), we first prove L(G) ⊆ L(G′) by showing how derivations of G are simulated by G′,
and then we prove L(G′)⊆ L(G) by showing how every s ∈ L(G′) can be generated by G.

Set V = N ∪T and N̄ = N′−N. Observe that all strings derived from S′ in G′ are of the form 〈z〉u,
#u, or u, where 〈z〉 ∈ N̄, u ∈V ∗.

Claim 1. If (u,r)⇒G (w,q), then (#u,r)⇒∗G′ (#w,q), where u,w ∈V ∗, r,q ∈Ψ.

Proof. Let br : A→ x,σr,σpc ∈ P. Then, following rules are in P′:

• br : A→ x,{rσ},{rφ}c created in (1.1),

• brσ : #→ 〈rσ〉,{X}, /0c created in (1.2),

• brφ : #→ 〈rφ〉,{X}, /0c created in (1.3),

• b〈rσBq〉 : 〈rσ〉 → #,{q}, /0c created in (1.4),

• b〈rφBq〉 : 〈rφ〉 → #,{q}, /0c created in (1.5).

There are two cases, (i) and (ii), based on whether u contain at least one occurence of A or not:

(i) Assume u contains at least one occurence of A. Then, (#u,r)⇒G′ (#w,rσ)⇒G′ (〈rσ〉w,X)⇒G′

(〈rσ〉w,〈rσBq〉)⇒G′ (#w,q), so the lemma holds for this case.

(ii) Assume u does not contain any occurence of A. Then, (#u,r)⇒G′ (#w,rφ)⇒G′ (〈rφ〉w,X)⇒G′

(〈rφ〉w,〈rφBq〉)⇒G′ (#w,q), so the lemma holds for this case.

Observe, that these two cases cover all possible forms of (u,r)⇒G (w,q). Thus, the lemma holds.

Due to the size constraint of this paper, the proofs of the following two claims are left to the reader.

Claim 2. If (S′,α)⇒∗G′ (#w,q), where α,q ∈Ψ′, w ∈V ∗, then (S′,α′)⇒∗G′ (w,q′), where α′,q′ ∈Ψ′.

Claim 3. If (S′,α′)⇒∗G′ (w,q′), then (S′,α)⇒∗G′ (#w,q), where α, α′, q′ ∈Ψ′, q ∈Ψ, and w ∈V ∗.

Claim 1 establishes the relation between the derivation step in G and its counterpart in G′. Claims 2
and 3 show the relation between w ∈V ∗ derived in G′ from S′, and its corresponding sentence form,
#〈z〉w, containing the symbol used to preserve the information about the last applied rule.

The following claim demonstrates how derivations of G are simulated by G′.

Claim 4. Let (S,r)⇒m
G (w,q), where r,q ∈ Ψ, w ∈ V ∗, for some m ≥ 1. Then, (S′,rs)⇒∗G′ (#w,q),

where rs ∈Ψ′.



Proof. This claim is established by induction on m, m≥ 1.

Basis. Let m = 1. Then, (S,r)⇒G (w,q) by some r ∈ Ψ. By Claim 1, (#S,r)⇒∗G′ (#w,q). Since r
has S on its left-hand side, brs : S′→ #〈 /0〉S,{r}, /0c ∈ P′ by (2.1), so (S′,rs)⇒G′ (#S,r)⇒∗G′ (#w,q).
Thus, the basis holds.

Induction Hypothesis. Suppose that the claim holds for all derivations of length l or less, where l ≤m,
for some m≥ 1.

Induction Step. Consider any derivation of the form (S,r)⇒m+1
G (w,q), where w ∈ V ∗ and r,q ∈ Ψ.

Since m+1≥ 1, this derivation can be expressed as (S,r)⇒m
G (x, p)⇒G (w,q), where x ∈V ∗, p ∈Ψ.

By the induction hypothesis, (S′,rs)⇒∗G′ (#x, p), and by Claim 1, (#x, p)⇒∗G′ (#w,q). Thus, the claim
holds.

Now, we show that for each derivation of #u in G′, there is a derivation of u in G, which will be later
used to prove L(G′)⊆ L(G).

Claim 5. If (S′,rs)⇒m
G′ (#u,q), for some m ≥ 1, then (S,r)⇒∗G (u,q), where r,q ∈ Ψ, rs ∈ Ψ′, and

u ∈V ∗.

Proof. This claim is established by induction on m, m≥ 1.

Basis. Let m = 1. Then, (S′,rs)⇒G′ (#S,r). As rs is created in (2.1) from r ∈Ψ, (S,r)⇒0
G (S,r), so

the basis holds.

Induction Hypothesis. Suppose that the claim holds for all derivations of length l or less, where l ≤m,
for some m≥ 1.

Induction Step. Consider any (S′,rs)⇒m+1
G′ (#u,q), where u ∈V ∗ and rs,q ∈Ψ. Since m+1≥ 2, this

derivation can be expressed as

(S′,rs)⇒m
G′ (〈z〉v,〈zBq〉)⇒G′ (#u,q),

where v ∈V ∗, 〈z〉 ∈ N̄, and 〈zBq〉 ∈Ψ′. Observe, that 〈zBq〉 was created in (1.4) or (1.5) from some
bp : A→ ω,σp,φpc ∈ P and q is contained either σp or in φp. Therefore, 〈z〉 is either 〈pσ〉 or 〈pφ〉.
Recall, that only φX contains labels created in (1.4) or (1.5), so the derivation can be expressed as

(S′,rs)⇒m−1
G′ (〈z〉v,X)⇒G′ (〈z〉v,〈zBq〉)⇒G′ (#u,q).

Note, that X is only in the success field of rules created in (1.2) or (1.3). Let pσ and pφ denote the
rules created from p in (1.2) and (1.3), respectively. As (〈z〉v,〈zB q〉)⇒G′ (#u,q), either pσ or pφ

have to precede X in the derivation, so it can be expressed as

(S′,rs)⇒m−3
G′ (#w, p)⇒G′ (#v, p′)⇒G′ (〈z〉v,X)⇒G′ (〈z〉v,〈zBq〉)⇒G′ (#u,q),

where w ∈ V ∗ and p′ ∈ {pσ, pφ}. Observe, that (#w, p) ⇒G′ (#v, p′) holds due to the bp : A →
ω,{pσ},{pφ}c created in (1.1) from the same bp : A→ ω,σp,φpc ∈ P. Therefore, (w, p)⇒G (v,q).
Note, that p ∈ Ψ and (S′,rs)⇒m−3

G′ (#w, p). Then, by the induction hypothesis, (S,r)⇒∗G (w, p), so
the claim holds.

To establish L(G) = L(G′), it suffices to show the following two statements:



• by Claim 4, for each (S,r)⇒∗G (u,q), where r,q ∈Ψ, and u ∈ T ∗, there is (S′,rs)⇒∗G′ (#u,q),
where rs ∈Ψ′. Then, (S′,r′)⇒∗G′ (u,q′) by Claim 2, so L(G)⊆ L(G′).

• by Claim 3, for each (S′,r′)⇒∗G′ (u,q′), where r′,q′ ∈Ψ′ and u∈ T ∗, there is (S′,rs)⇒∗G′ (#u,q),
where rs ∈Ψ′ and q ∈Ψ. Then, (S,r)⇒∗G (u,q), where r ∈Ψ, by Claim 5, so L(G′)⊆ L(G).

As L(G)⊆ L(G′) and L(G′)⊆ L(G), L(G) = L(G′), so the lemma holds.

The following theorem represents the main achievement of this paper. The theorem follows from
Algorithm 1 and Lemma 1.

Theorem 1. For any programmed grammar with appearance checking, G, there is a programmed
grammar with apppearance checking in the one-ND rule normal form, G′, such that L(G′) = L(G).

4 CONCLUSION

In this section, we present some open problems. Observe, that Algorithm 1 introduces erasing rules to
G′, even if the input grammar is propagating. Can the algorithm be modified in such way, that when
G is propagating, then so is G′?

Second, even the deterministic rules of G are processed by Algorithm 1, thus unnecessary increasing
the descriptional complexity of G′. Can we modify the algorithm, so it will not introduce unnecessary
symbols and rules to G′?

ACKNOWLEDGEMENT

This work was supported by the following grants: MŠMT FR271/2012/G1, BUT FIT FIT-S-11-2, EU
CZ 1.05/1.1.00/02.0070, and CEZ MŠMT MSM 0021630528.

REFERENCES

[1] M. Barbaiani, C. Bibire, J. Dassow, A. Delaney, S. Fazekas, M. Ionescu, G. Liu, A. Lodhi, and
B. Nagy. The power of programmed grammars with graphs from various classes. Journal of
Applied Mathematics & Computing, 22(1–2):21–38, 2006.

[2] H. Bordihn and M. Holzer. Programmed grammars and their relation to the LBA problem.
Acta Informatica, 43(4):223–242, 2006.

[3] J. Dassow and G. Păun. Regulated Rewriting in Formal Language Theory. Springer, 1989.
[4] H. Fernau. Nonterminal complexity of programmed grammars. Theoretical Computer Science,

296(2):225–251, 2003.
[5] H. Fernau, R. Freund, M. Oswald, and K. Reinhardt. Refining the nonterminal complexity of

graph-controlled, programmed, and matrix grammars. Journal of Automata, Languages and
Combinatorics, 12(1–2):117–138, 2007.

[6] H. Fernau and F. Stephan. Characterizations of recursively enumerable sets by programmed
grammars with unconditional transfer. Journal of Automata, Languages and Combinatorics,
4(2):117–152, 1999.

[7] A. Meduna. Automata and Languages: Theory and Applications. Springer, London, 2000.
[8] Alexander Meduna, Lukáš Vrábel, and Petr Zemek. On nondeterminism in programmed

grammars. In AFL, 2011.
[9] D. J. Rosenkrantz. Programmed grammars and classes of formal languages. Journal of the

ACM, 16(1):107–131, 1969.
[10] Lukáš Vrábel. A new normal form for programmed grammars. In In Proceedings of the 17th

Conference STUDENT EEICT 2011, 2011.


