DATAMINING IN DATA STREAMS

Jakub Maly
Doctoral Degree Programme (1), FIT BUT
E-mail: xmalyj07@stud.fit.vutbr.cz

Supervised by: Jitka Kreslikova
E-mail: kreslika@fit.vutbr.cz

Abstract: Process of data mining consists from many steps. Successful and fast data mining chal-
lenges us with techniques for data reduction without substantial loss of information, structuring da-
ta by indexing methods for faster retrieving and final data mining. In this paper several final data
mining algorithms are overviewed.

Keywords: Data mining, Lossy counting algorithm, DSM-FI, FTP-DS, estDec

. INTRODUCTION

Data mining is process of finding relevant information in data. This relevant information can be
frequent patterns. The pattern can be a set of items, subsequence, substructure. To consider pattern
as frequent it must comply with condition of minimum support. There are methods for data mining
in static data sets, but e.g. financial data streams — which is never ending stream of data - different
approaches. This is because we cannot scan whole history of database, so we cannot easily deter-
mine which patterns are frequent.

There are two approaches to overcome difficulty with determination of frequent and infrequent pat-
terns — which frequency of occurrence can vary during the time:

1. Itis possible to keep track just for predefined, limited set of items.
2. Or it is possible to derive approximate set of answers, which approximates the frequency of
items within user defined error bound &.

The first approach has very limited usage because it requires the system to confine the scope of
predefined patterns beforehand. The second approach is more common in data mining; therefore
this chapter will cover some interesting data mining methods from this area.

. ALGHORITHMS

2.1. LOSSY COUNTING ALGORITHM

Simple but very efficient algorithm. User defines two input parameters — minimal support threshold
o, error £ bound. Incoming data stream is divided into groups of same width w = i . Let N be the

count of items seen so far. Frequency list data structure is used by this algorithm to store all items
with frequency >0. For each of stored items the structure contains information about approximate
frequency count f and A for maximum possible error of f. The algorithm is processing groups of
same length and frequency list is continuously updated. If a given item already exists in the list, its
frequency count is increased. If item does not exist in list it is added into and its f value is set to de-
fault value of 1. If the new item is from bth group, we set A, the maximum possible error on the
frequency count of the item to be b — 1. Whenever a last item in group is processed the frequency
structure list is revaluated. Let b be current group number. An item from frequency list structure is
removed when condition f + A < b is satisfied. Thanks to this revaluation frequency list remains



small in size and can be stored in limited computer memory. The frequency count stored for each
item is true frequency of an item or an underestimate of it.

Approximation ratio (or error bound) is one of the most important factors. Item from frequency
structure list is deleted in case f + A < b condition is satisfied for an item. f + A stands for actu-

al maximal frequency. Following conditions are valid b < % b < &eN. From previous equation re-
sults that maximal value of b for item to be underestimated is equal to eN.

Features of Lossy counting algorithm

- No false negatives

- Result can contains false positives — but their minimal frequency still satisfies condition
f= oN—¢N

- Frequency of a frequent item can be underestimated by at most eN

- Needed space for items in computer memory to handle Lossy counting algorithm should not

7
exceed =

Looking for frequent itemsets is more difficult that looking for frequent items. Number of possibili-
ties grows exponentially with count of items in set. Processing group after group can lead to out of
memory problems very soon. It is possible to process as many groups as possible (related to
memory issues) to partially avoid this problem. With consideration to loading as many groups as
possible to memory frequency list structure oriented on frequent itemsets can be created. In case S
groups can be read into computer memory following operation can be done. We update f by count-
ing the occurrences of an itemset among the current batch of g groups if this itemset already exists
in frequency list structure. In case updated itemset satisfies f + A < b where b stands for current
group number, itemset is removed from frequency list structure. In case when itemset has frequen-
cy f = B, and it is not currently presented in frequency list, it is inserted with A= b — 8 where
A represents maximum error of f.

It is very common in real applications to set 4 to larger numbers — greater than 30. This setting has
significant influence to memory consumption. The bigger the 3 the lesser the count of stored item
sets. As the count of stored itemsets rise the algorithm is slower and much greedier for free
memory. Lossy counting algorithm has following limitations:

- Space bound is insufficient due to frequency list structure, which can grow as far as data stream
continue

- Content of frequency list structure is based on all previews processed data, although user pref-
erences can be different — he can be more interested in recent data than historical ones

2.2. DSM-FI

Single-pass algorithm for mining of all frequent itemsets in data streams based on a landmark win-
dows model with defined minimum support threshold ms € (0, 1) and user-defined maximal es-
timated support error threshold ¢ € (0, ms) with a goal to minimize memory usage as possible
(Hua-Fu, Suh-Yin, & Man-Kwan, An Efficient Algorithm for Mining Frequent ltemests over the
Entire History of Data Streams).

DSM-FI algorithm reads a basic window of transactions from the buffer in main memory and sorts
them in lexicographical order. It constructs and maintains an in-memory prefix-tree based summary
data structure called SFI-Forest (Summary Frequent Itemset Forest). It prunes the infrequent in-
formation from the current SFI-Forest. It finds the frequent itemsets from the SFI-Forest when it is
needed.

Algorithm to search frequent (Top Down Frequent Itemset selection) for identifying frequent items
from SFI-Forest can be found as part of (Hua-Fu, Man-Kwan, & Suh-Yin, DSM-FI: An efficient
algorithm fo mining frequent itemsets in data streams, 2007) paper.



Comparision to Lossy counting alghoritm (LCA)

In practice, execution of DSM-FI is steadier and shorter than LCA. Memory usage of DSM-FI is
more stable. This is mainly because DSM-FI does not need to enumerate all subsets of each incom-
ing transaction. The amount of all subsets is an enormous exponential number for long transaction.
Hence, it shows that DSM-FI is more suitable for mining long frequent itemsets in data streams
(Hua-Fu, Suh-Yin, & Man-Kwan, An Efficient Algorithm for Mining Frequent Itemests over the
Entire History of Data Streams).

23. FTP-DS

FTP-DS (Frequent Temporal Patterns of Data Streams) has two major features. The first one is one
scan for online statistics collection and regression-based compact pattern representation. This in-
formation is used for better addressing time and the space constraints in a data stream environment.
To attain the feature of one data scan, the occurrence frequency of a temporal pattern is first de-
fined in accordance with the time constraint of sliding windows. For frequency counting purpose
the data segmentation and pattern growth scenarios are explored. In next step FTP-DS scans online
transaction flows and generates candidate frequent patterns as data arrives. Thanks to downward
closure property, longer patterns are gradually formed from their subsets as time advances. The re-
sult of this is that frequent patterns are incrementally discovered and recorded by only one database
scan. The second major feature of FTP-DS is based on the regression-based compact pattern repre-
sentation which is designed to address the space constraint of a data stream environment. Data
stream of incoming data is segmented. Regression process is used for identifying each segment of a
time series. Regression analysis is used to capture the trends of frequent patterns. Algorithm works
with implements segmentation tuning which aims to reduce the error of constructing fit lines. Seg-
mentation tuning can result in more precise segments, which leads to more accurate mining results.
The second improving technique is the segment relaxation which refers to the adjustment of seg-
ment periods along the time dimension in accordance with their corresponding importance to save
the storage required. By experimental tests it was proved that algorithm FTP-DS can meet both
time and space limitations in a data stream environment (Wei-Guang, Ming-Syan, & Philip S.,
2003).

Algorithm FTP-DS: Frequent Temporal Patterns of Data Streams can be found as part of (Wei-
Guang, Ming-Syan, & Philip S., 2003) paper.

2.4. ESTDEC

Algorithm estDec is designed to work with most recent data, which has the biggest impact on item-
set frequency. Algorithm examines each transaction in a data stream one by one without any candi-
date generation and keeps track of the occurrence count of an itemset in the transactions generated
so far by a prefix tree structure. estDec maintains a lattice for recording the potentially frequent
itemsets and their counts, and updates the lattice for each new transaction correspondingly. By re-
cording additional information for each itemset p, the time-point of the most recent transaction that
contains p, the algorithm only needs to update the counts for the itemsets which are the subsets of
newly arrived transactions. It reduces their counts using the constant factor d and then increases
them by one (Mala & Dhanaseelan, 2011).

Algorithm estDec can be found as part of (Joong Hyuk & Won Suk, 2003) paper.

. FUTURE RESEARCH

In future 1 will try to learn more about other algorithms for more accurate selection of set of algo-
rithms for my next research work related to price stream indication system.



As a part of my future research, | would like to test the efficiency of alternative algorithms, namely
IDSM-MFI [6]. Live data streams data mining is generally posing more challenges for the data
processing subsystems than mining static database data set collections because of the continuous
nature of the streaming data. IDSM-MFI algorithm implements a synopsis data structure concept
which stores the transactions progressively found in the data streams that are being mined. IDSM-
MFI algorithm uses a top-bottom and bottom-top models to construct the set of all maximum fre-
quent itemsets in landmark windows that are contained in the examined data stream. The data min-
ing results can be displayed in real time based on the operator's preferences and expressed thresh-
olds. The creators of IDSM-MFI algorithm claim that their theoretical analysis and experimental
results prove the efficiency of this algorithm, as well as its robustness and scalability for mining the
data set for all maximum frequent itemsets in the history of the examined data stream.

I would also like to analyse the Probabilistic Lossy Counting (PLC) algorithm, introduced by the
authors Dimitropoulos, Hurley and Kind from IBM Zurich Research Lab. PLC algorithm focuses
on processing real time data traffic flows in network management applications in order to pin point
the largest flows. The central issue related to finding these resource-consuming network flows is
known as the “heavy-hitter problem”. Numerous attempts at solving the heavy-hitter problem have
been made in the past years. The suggested Probabilistic lossy counting algorithm enhances the
above discussed Lossy counting algorithm and is geared towards the applications in the domain of
network traffic to uncover the heavy-hitters. The accuracy of PLC derives more from probabilistic
rather than deterministic guarantees. The main advantage of PLC over LC is seen in lower memory
consumption. Moreover, PLC generates lower rate of false positives compared to LC as well as low
estimation error, even though the estimation error is slightly higher than the same measure for LC.

4. CONCLUSION

Enormous effort is invested into development of new data mining algorithms, which are faster, less
greedy for computer resources and can successfully filter insignificant information. Data streams
are a computational challenge to data mining problems because of the additional algorithmic con-
straints created by the large volume of data.

ACKNOWLEDGEMENT

This work was partially supported by the BUT FIT grant FIT-S-11-1 and the research plan
MSM0021630528.

REFERENCES

[1] Hua-Fu, Li, Suh-Yin, Lee a Man-Kwan, Shan: An Efficient Algorithm for Mining Frequent
Itemests over the Entire History of Data Streams, National Chiao-Tung University, Taiwan,
[online, cit. 2012-03-05],

WWW: <http://selab.iecs.fcu.edu.tw/wiki/images/4/46/An_efficient_algorithm_for_mining_fr
equent_itemsets_over_the_entire_history of data_streams.pdf>

[2] Hua-Fu, Li, Man-Kwan, Shan a Suh-Yin, Lee: DSM-FI: An efficient algorithm for mining fre-
guent itemsets in data streams, London: Springer-Verlag, 2007,

[online, cit. 2012-03-05],
WWW: <http://nccur.lib.nccu.edu.tw/bitstream/140.119/29576/1/12.pdf>

[3] Wei-Guang, Teng, Ming-Syan, Chen a Philip S., Yu: A Regression-Based Temporal Pattern
Mining Scheme for Data Streams, National Taiwan University, Taiwan, 2003,

[online, cit. 2012-03-05],
WWW: <http://www.vldb.org/conf/2003/papers/S04P03.pdf>

[4] Mala, A. a Dhanaseelan, F.Ramesh: Data streamming algorithms - a review of issues and ex-

isting approaches, KNSK College of Engineering, Nagercoil, India, 2011,



[online, cit. 2012-03-05],
WWW: <http://www.enggjournals.com/ijcse/doc/IJCSE11-03-07-064.pdf>

[5] Joong Hyuk, Chang a Won Suk, Lee: Finding Recent Frequent Itemsets Adaptively over
Online Data Streams, Yonsei University, Seoul, Korea, 2003,
[online, cit. 2012-03-05],
WWW: <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.1264>

[6] Yinmin Mao, Hong Li, Lumin Yang, Zhigang Chen, Lixin Liu, "A Mining Maximal Frequent
Itemsets over the Entire History of Data Streams," dbta, pp.413-417, 2009 First International
Workshop on Database Technology and Applications, 2009



