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Abstract: This paper discusses path controlled grammars—context-free grammars with a root-to-leaf
path in their derivation trees restricted by a control language. First, it introduces a close relationship
between some pseudoknots and path controlled grammars generating them in an intuitive way. Then,
it discusses pseudoknot-like structures and its relationship to grammars with several controlled paths.
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1 INTRODUCTION

The investigation of context-free grammars with controlled paths represents an important trend in
today’s formal language theory (see [2], [6], [9], and [10]). In [9], path-controlled grammars are
introduced as an attempt to increase the generative power of context-free grammar without changing
the basic formalism and without loosing some basic properties of the class of context-free languages.
Consider a context-free grammar G and a context-free language R. A string w generated by G belongs
to the language defined by G and R if there is a derivation tree t for w in G such that there exists a path
p of t described by R.

A pseudoknot is introduced as the turnip yellow mosaic virus (see [13]) and it is a nucleic acid
secondary structure with two or more stem-loop structures such that half of one stem is inserted
between the two halves of another stem. Although pseudoknots form knot-shaped three-dimensional
patterns, they are not true topological knots. The biological significance of pseudoknots rely on
RNA molecules that form pseudoknots (see [4]). The fundamental problem in pseudoknot theory in
relation to formal language theory is identification of a pseudoknot—membership problem in terms
of theoretical computer science. It is well-known that the general problem of predicting lowest free
energy structures with pseudoknots is NP-complete (see [7] and [8]).

The main goal of this paper is to demonstrate some typical pseudoknots generated by path controlled
grammars (see [9]) for which membership problem is decidable in a polynomial time (see [10]).

2 PRELIMINARIES

This paper assumes that the reader is familiar with the graph theory (see [1]) and the theory of formal
languages (see [11]) including the theory of regulated rewriting (see [3]).

For an alphabet V , V ∗ denotes the free monoid (generated by V under the operation concatenation), ε

is the unit of V ∗, and V+ =V ∗−{ε}. A subset L⊆V ∗ is a language over V . For x ∈V ∗, xR is mirror
image of x.

A context-free grammar is a quadruple G= (V,T,P,S) where V is a total alphabet, T ⊆V is a terminal
alphabet, P is a finite set of rules of the form p : A→ x where p is unique label, A ∈ V −T , x ∈ V ∗,
and S ∈ V − T is the starting symbol. For the conciseness, we use the notation A→ B|C ∈ P in
usual meaning—A→ B ∈ P and A→ C ∈ P. A grammar G = (V,T,P,S) is linear, if and only if



for all p : A→ x ∈ P, x ∈ T ∗(V − T )T ∗ ∪ T ∗. A derivation step in G is defined for u,v ∈ V ∗ and
p : A→ x ∈ P as uAv⇒ uxv [p]. In the standard manner, we introduce the relations ⇒i, ⇒+, and
⇒∗ (see [11]). The language of context-free, linear grammar G is called context-free language, linear
language, respectively, and it is defined as L(G) = {x∈ T ∗| S⇒∗ x}. The families of linear languages
and context-free languages are denoted by LIN and CF, respectively.

Let G = (V,T,P,S) be a context-free grammar and x ∈ T ∗. Let G4(x) denote the set of the derivation
trees with frontier x in G. Let t ∈ G4(x). A path of t is any nonempty sequence of the nodes with the
first node equals the root of t, the last node equals a leaf of t, and there is an edge in t between each
two consecutive nodes of the sequence. Let s be a sequence of the nodes of t, then word(s) denotes
the string obtained by concatenation of all labels of the nodes of s in order from left to right.

3 DEFINITIONS

Since, in general, restrictions placed upon a path is a restriction placed upon a derivation tree, we use
a slightly modified but equivalent formulation of the definitions stated in [9] and [10]. Consequently,
aforementioned modifications allow us to study all derivation-tree-based restrictions (levels, paths,
cuts) using the same terminology.

Definition 1. A tree-controlled grammar, TC grammar for short, is a pair (G,R) where G=(V,T,P,S)
is a controlled grammar and R⊆V ∗ is a control language. The language that (G,R) generates under
the path control by R is denoted by pathL(G,R) and defined by the following equivalence: For all
z ∈ T ∗, z ∈ pathL(G,R) if and only if there exists a derivation tree t ∈ G4(z) such that there is path p
of t with word(p) ∈ R. Let path-TC(LIN,LIN) = {pathL(G,R)| (G,R) is a TC grammar with linear
grammar G and linear language R}.

Example 1. Consider the TC grammar (G,R) that generates pathL(G,R) where

G = ({S,B,D,a,b,c,d},{a,b,c,d},P,S),
P = {S→ aSd, S→ aBd, B→ bBc, B→ D, D→ bc},
R = {SnBnDb| n≥ 1}.

Clearly, pathL(G,R) = {akbkckdk| k ≥ 1} /∈ CF.

Inspired by biology (see [13]), we just present some typical pseudoknots in the form of string repre-
sentation and due to space restrictions, formal definition of general pseudoknot (see [5]) is omitted.
Howerver, as opposed to biology where RNA is formed over finite alphabet (Adenin, Guanin, Cytosin,
and Uracil), we generalize the pseudoknots over arbitrarily alphabet Σ. The pseudoknots are defined
both as stem-only form as well as the form with arbitrarily string between the stems.

Definition 2. Let Σ be an alphabet. The following languages over Σ (see Figure 1) are pseudoknots.

1) {xyxRyR| x,y ∈ Σ∗}, {u1xu2yu3xRu4yRu5| x,y,ui ∈ Σ∗,1≤ i≤ 5},
2) {xyxRzzRyR| x,y,z ∈ Σ∗}, {u1xu2yu3xRu4zu5zRu6yRu7| x,y,z,ui ∈ Σ∗,1≤ i≤ 7},
3) {xyxRzyRzR| x,y,z ∈ Σ∗}, {u1xu2yu3xRu4zu5yRu6zRu7| x,y,z,ui ∈ Σ∗,1≤ i≤ 7},
4) {xyzxRyRzR| x,y,z ∈ Σ∗}, {u1xu2yu3zu4xRu5yRu6zRu7| x,y,z,ui ∈ Σ∗,1≤ i≤ 7}.

4 RESULTS

In this section, we present some results related to pseudoknots generated by TC grammars with linear
components that generate the language under path control.
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Figure 1: Pseudoknot examples, (top-left) {xyxRyR| x,y ∈ Σ∗}, (top-right) {xyxRzzRyR| x,y,z ∈ Σ∗},
(bottom-left) {xyxRzyRzR| x,y,z ∈ Σ∗}, (bottom-right) {xyzxRyRzR| x,y,z ∈ Σ∗}.

Theorem 1. {xyxRyR| x,y ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN).

Proof. Consider TC grammar (G,R) where

G = ({S,A,B,A′,B′,C,D,U,V,a,b,0,1},{a,b,0,1},P,S),
P = {1 : S→ aA | bB,

2 : A→ aA | aB | 0C0 | 1D1,
3 : B→ bB | bA | 0C0 | 1D1,
4 : C→ 0C0 | 1D1 | A′ | B′,
5 : D→ 1D1 | 0C0 | A′ | B′,
6 : A′→ aA′ | bB′ |U,
7 : B′→ bB′ | aA′ | V,
8 : U → a,
9 : V → b}

R = {Suvh(uR)z| u ∈ {A,B}∗,v ∈ {C,D}∗},z ∈ {Ua,V b}
where h is the morphism defined by h(A) = A′, h(B) = B′.

Explanation: Starting from S, (G,R) by 1 generates w = aA or w = bB. Then, (G,R) repeatly uses
2, 3 to generate w = xA or w = xB where x ∈ {a,b}∗ with the derivation tree containing a path Su
where u ∈ {A,B}∗. Next, (G,R) by 2, 3 generates C or D in a sentential form and thus w = x0C0 or
w = x1D1 where x ∈ {a,b}∗ with the derivation tree containing a path SuC or SuD where u∈ {A,B}∗,
respectively. Then, (G,R) repeatly uses 4, 5 to generate w = xyCy or w = xyDyR where x ∈ {a,b}∗,
y ∈ {0,1}∗ with the derivation tree containing a path Suv where u ∈ {A,B}∗, v ∈ {C,D}∗. By 4, 5,
(G,R) generates w = xyA′yR or w = xyB′yR where x ∈ {a,b}∗, y ∈ {0,1}∗ with the derivation tree
containing a path SuvA′ or SuvB′ where u ∈ {A,B}∗, v ∈ {C,D}∗, respectively. Then, (G,R) uses
6, 7 to generate w = xyx′A′yR or w = xyx′B′yR where x,x′ ∈ {a,b}∗, y ∈ {0,1}∗ with the derivation
tree containing a path Suvu′ where u ∈ {A,B}∗, v ∈ {C,D}∗, u′ ∈ {A′,B′}∗, and the equivalence
u′ = h(uR) is ensured by the controlling language R. Next, (G,R) uses 6, 7 to generate w = xyx′UyR



or w = xyx′V yR where x,x′ ∈ {a,b}∗, y ∈ {0,1}∗ with the derivation tree containing a path Suvu′U
or Suvu′V , respectively, where u ∈ {A,B}∗, v ∈ {C,D}∗, u′ ∈ {A′,B′}∗, and u′ = h(uR). Finally,
(G,R) uses 8, 9 to generate w = xyxRyR ∈ T ∗ with the derivation tree containing a path Suvu′Ua
or Suvu′V b where u ∈ {A,B}∗, v ∈ {C,D}∗, u′ ∈ {A′,B′}∗ with u = h(uR). Thus, (G,R) generates
pathL(G,R) = {w| w = xyxRyR,x ∈ {a,b}∗,y ∈ {0,1}∗} that forms the pseudoknot. Clearly, both G
and R are linear.

Using the same idea as in the proof of Theorem 1, we can demonstrate the following.

Theorem 2. {xyxRzzRyR| x,y,z ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN).

Theorem 3. {xyxRzyRzR| x,y,z ∈ Σ∗ for some Σ} ∈ path-TC(LIN,LIN).

Proof. Due to space restrictions, TC grammars generating the pseudoknots stated in Theorems 2 and
3 that actually proves the theorems are omitted. However, the schemes of the derivation trees in
corresponding TC grammars are sketched in Fig. 2 where the derivation trees of linear grammars that
contain a path described by linear languages are presented.
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Figure 2: Schemes of the structure of the derivation trees of linear grammars that contain a path
described by linear language, (left) {xyxRyR| x,y ∈ Σ∗ for some Σ}, (middle) {xyxRzyRzR| x,y,z ∈ Σ∗

for some Σ}, (right) {xyxRzzRyR| x,y,z∈ Σ∗ for some Σ}. Observe that the parts branched on the same
level of the derivation tree (schematic view) are handled by the base linear grammar without use of
the path control.

Corollary 4. The pseudoknots 1) through 3) introduced in Definition 2 belong to path-TC(LIN,LIN)
both in stem-only form as well as in the form with arbitrarily string between the stems.

Open problem 1. Does it hold that {xyzxRyRzR| x,y,z ∈ Σ∗} ∈ path-TC(LIN,LIN)?

5 CONCLUSION

We have demonstrated several typical pseudoknots used in biology represented by the strings. It is
well-known that aforementioned pseudoknots do not belong to CF. Inspired by path-controlled gram-
mars introduced in [9] which achieve several properties of context-free grammars, we have demon-
strated that some pseudoknots belong to path-TC(LIN,LIN). As it clearly follows from Fig. 2, there



are some other combinations of stem positions resulting in the language of pseudoknots-like strings
in path-TC(LIN,LIN) not mentioned in this paper, however, those structures do not belong to basic
pseudoknots appearing in biology.

The open question is whether or not {xyzxRyRzR| x,y,z ∈ Σ∗} and other pseudoknot-like structures
(e.g., {xyxRzyRwzRwR| x,y,z,w ∈ Σ∗} etc.) can be generated by TC grammars with linear components
that generate the language under path control. To answer this question, Ogdens-like lemma should
be established and used to disprove that those languages do belong to path-TC(LIN,LIN). If they
do not, it would mean either we need stronger components (e.g., path-TC(CF,LIN)) or we need to
control more than one path (e.g., n-path-TC(CF,LIN) or its variants, see [6]). Note that such kind
of Ogdens lemma should be significantly stronger than Prop 8 (Pumping Lemma) in [9] since Ogdens
lemma considers not only the substrings but also the positions (see [12]).
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