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Abstract: This paper analyses the capabilities of using wavelet power spectrum for classification of
spectra of Be stars. We propose a method of using the wavelet power spectrum as a feature vector
and apply it to clustering of artificial spectra. The method is compared with a traditional approach of
feature extraction and the results of our method are significantly better.
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1 INTRODUCTION

Nowadays, astronomy is facing an exponentially growing amount of data due to the evolution of
detectors, telescopes and space instruments [1, 2]. Petabytes of data are expected to flow from massive
digital sky surveys in the next decade, being stored in the world-wide network of distributed archives.
The effective retrieval of knowledge from these massive distributed databases requires new automated
approaches of knowledge discovery in databases based on machine learning methods.

The aim of this paper is to analyse the capabilities of using wavelet power spectrum for automated
classification of spectra of Be stars. It seems that wavelets have not been used this way yet in astron-
omy, although they have been successfully applied in several other domains, mainly on medical data
(classification or detection of a disease or an event from EEG/ECG signals [6, 10, 11]).

2 BACKGROUND

2.1 CLASSIFICATION

In data mining, classification refers to assigning a data item into one of several predefined classes [5].
The piece of input data is represented by a set of characteristics (features), which is usually obtained
from the original data by feature extraction.

2.2 CLUSTERING

Clustering refers to assigning a set of objects into groups (clusters) so that the objects in the same
cluster are more similar (based on some similarity measure) to each other than to those in other
clusters [9].

The accuracy of clustering can be evaluated with the silhouette method [12]. This technique provides
an information of how well each object lies within its cluster. This measure ranges from +1, indi-
cating points that are very distant from neighboring clusters, through 0, indicating points that are not
distinctly in one cluster or another, to -1, indicating points that are probably assigned to the wrong



cluster. The average silhouette value of the entire dataset is a measure of how appropriately the data
has been clustered.

2.3 FEATURE EXTRACTION

Real world data sets are usually not directly suitable for performing data-mining algorithms [7]. They
may contain noise, missing values, and usually are too large and high-dimensional. One of the meth-
ods of dimensionality reduction is feature extraction. It consists in transforming the input data into
a reduced representation set of features known as feature vector. One of popular feature extraction
techniques used for signals is wavelet transform.

2.4 WAVELET TRANSFORM

The wavelet transform consists in partitioning data (signals) into different frequency components [7].
One major advantage of wavelets is the ability to analyze a local area of a signal [11]. Wavelet
analysis is capable of revealing aspects of data that other signal analysis techniques miss, such as
trends, breakdown points, or discontinuities. Wavelet transforms have gained popularity in all areas
of signal processing and they have also been extensively used in astronomical data analysis during
the last fifteen years [13]. A lot of literature can be found about wavelets, e.g. [4].

Discrete Wavelet Transform (DWT) The principle of the DWT consists in passing the original
signal through two complementary filters – low-pass and high-pass [11]. This results in two signals,
referred to as approximation and detail. The approximation is a high-scale, low-frequency component
of the signal, the detail is a low-scale, high-frequency component. After each pass through filters,
downsampling (removing every alternative coefficient) is performed in order to avoid doubling the
amount of data.

The decomposition process can be iterated by splitting the approximation part of a signal as it still
contains some details. This can be repeated so long until we are satisfied with the resolution of
components we have created. The wavelet transform of data at a level i of decomposition consists of
approximation coefficients at i-th level and all detail coefficients up to i-th level, resulting in number
of levels + 1 coefficient bands. The wavelet coefficients reflect the correlation between the wavelet
(at a certain scale) and the data array (at a particular location). A larger absolute value of a coefficient
implies a higher correlation.

Wavelet-Based Feature Extraction Common ways of feature extraction from time series using
wavelets are (1) keeping the first k coefficients (in this case each time series is represented by a rough
sketch, because these coefficients correspond to the low frequencies of the signal) and (2) keeping
the k largest coefficients (this achieves more accurate representation of the signal) [7]. The rest of the
signal is approximated with zeros.

3 DATA

The source of the data will be the archive of the Astronomical Institute of the Academy of Sciences
of the Czech Republic, which has a long-term experience with the research of Be stars.

Be stars are hot, rapidly rotating B-type stars with equatorial gaseous disk producing prominent emis-
sion lines in their photospheric spectrum [14]. Be stars show a number of different shapes of emission
lines, like double-peaked profiles with or without narrow absorption, or single peak profiles with var-
ious deformations, as we can see in Fig.1. Each line in the graph corresponds to one spectrum.
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Figure 1: Different shapes of emission lines [3]

4 METHOD

We propose a method of using the wavelet power spectrum (WPS) of a stellar spectrum as a feature
vector for classification. The WPS is a useful way how to determine the distribution of energy within
the signal [8]. By looking for regions of large power within WPS, we can determine which features
of the signal are important. The WPS at a particular decomposition level is calculated by summing
up the squares of wavelet coefficients at that level [11]. For a set of wavelet coefficients c j,k, where j
is the level of decomposition and k is the order of the coefficient, WPS is given by:

wps( j) =
2 j−1

∑
k=0

c2
j,k

A disadvantage of WPS is that the information about the positive/negative direction of the peak in the
spectrum is lost, as results from its definition, so it doesn’t distinguish spectra with the same shape of
the peak but the opposite direction. Therefore we propose a modified version of WPS – WPSD (WPS
keeping Direction) which retains this information. WPSD is defined as

wpsd( j) =
2 j−1

∑
k=0

c j,k ∗ |c j,k|,

where variables have the same meaning as for WPS. An example of WPS and WPSD of a simulated
spectrum is in Fig.2.

For comparison we use the traditional approach of keeping k largest coefficients with k = 20. The
analysis of WPS potential is performed on clustering of simulated spectra generated by computer.
The complete process of the analysis is described in following steps:

1. Simulated spectra generation: A collection of 1000 spectra has been created trying to cover
as many emission lines shapes as possible. Each spectrum is created using a combination of
3 gaussian functions with parameters generated randomly within appropriately defined ranges,
and complemented by a random noise. The length of a spectrum is 128 points which approxi-
mately corresponds to the length of a spectrum segment used for emission lines analysis. Each
spectrum is then convolved with a gaussian function, which simulates an appropriate resolution
of the spectrograph.

2. Feature extraction: At first, the discrete wavelet transform of simulated spectra is performed
using the Haar wavelet and 4 levels of decomposition. Then the WPS and WPSD are calcu-
lated and 3 types of feature vector are created: (1) WPS, (2) WPSD, and (3) keeping k largest
coefficients with k = 20.



Figure 2: An example of WPS and WPSD of a simulated spectrum. Number of coefficient bands =
number of decomposition levels + 1 (see DWT).

3. Clustering: Clustering is performed using k-means algorithm into 2-10 clusters and the sil-
houette method is used for the evaluation. This process is repeated 50-times and the average
silhouette values are presented as the results.

4. Classification: The feature extraction method with the best results is optimized for using on
large-scale data and applied to the classification of the real spectra. Currently, neural network
based classification is assumed.

5 RESULTS

The results of the clustering step are presented here. Figure 3 shows a dependency of the correctness
of clustering (average silhouette value) on the number of clusters for different types of feature vector.
We can see that using WPS and WPSD has very similar results for most numbers of clusters and in
both cases the results are significantly better than using k largest coefficients.

Figure 3: Correctness of clustering for different types of feature vector

6 CONCLUSION

In this paper, we have analysed the capabilities of using wavelet power spectrum for classification
of spectra of Be stars. We have proposed a method of using the WPS as a feature vector and also
proposed and examined a modified version of WPS. The method has been applied to clustering of



artificial spectra and compared with a traditional approach of keeping k largest coefficients. The
results show that using WPS (both the original and modified version) is significantly better.

The feature extraction method may be further enhanced by a selection of an optimal wavelet type and
a number of wavelet decomposition levels, which determines the length of WPS. In the final step, the
wavelet power spectrum will be applied in the classification of the real spectra.
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