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Abstract: In this paper existence of solutions of a certain class of differential linear matrix equations
with delay was investigated. The solutions were found in general form. Necessary and sufficient
condition for controllability of differential linear matrix equation with delay was defined and control
was built. Paper contains calculated examples.
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1 INTRODUCTION

In many dynamic systems a delay appears. For example, in the simplest electronical circuits, the delay
effect appears in voltage and current signals because of elements such as capacitors and inductors,
respectively. Such dynamic systems can be described by systems of differential equations with after-
effects.
This paper is devoted to computing the solution of differential linear matrix equation with delay, de-
scribed as follows, Ẋ(t) = AX(t)+AX(t−τ). To solve this matrix equation, the “step by step method”
has been used. The solution has been presented with help of the special matrix function - matrix ex-
ponential. Matrix exponential was used for solving differential equations by Krasovsky [7], [8] and
for solving systems with aftereffects by many authors, e.g. Boichuk, Diblík, Khusainov, Růžičková,
Shuklin [3] - [6].
The corresponding control problem has been built, a necessary and sufficient condition for controlla-
bility has been proposed and the control has been built.

2 LINEAR MATRIX EQUATION WITH DELAY

Let we have the equation
Ẋ(t) = AX(t)+AX(t− τ), (1)

with initial condition
X(t) = I, −τ ≤ t ≤ 0,

where A is square matrix, I is identity matrix, τ > 0,τ ∈ R is a constant delay.

Definition 2.1 Let A be a square matrix. Matrix exponential is defined by

eAt = I +A
t
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where I is the identity matrix.



Theorem 2.2 [2] Let A is regular. Then the solution of equation (1) with identity initial condition has
the recurrent form:

Xn+1(t) = eA(t−nτ)Xn(nτ)+
Z t

nτ

eA(t−s)AXn(s− τ)ds,

where Xn(t) is defined on the interval (n−1)τ ≤ t ≤ nτ.

Theorem 2.3 [1] Let A is regular. Then the solution of equation (1) with identity initial condition has
the form:

Xk(t) =
k−1

∑
l=o

2eA(t−lτ)
l

∑
p=0

(−1)p+lAp (t− lτ)p
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where Xk(t) is defined on the interval (k−1)τ ≤ t ≤ kτ.

Let we have the linear heterogeneous equation with delay

Ẋ(t) = AX(t)+AX(t− τ)+F(t). (2)

If we have initial condition in the form

X(t) = ϕ(t),− τ ≤ t ≤ 0, (3)

where ϕ(t) ∈C1[−τ,0], then we could write the following result.

Theorem 2.4 [2] Let A is regular. The solution of heterogeneous equation (2) with the initial condi-
tion (3) has the form

X(t) = Xn(t)ϕ(−τ)+
0Z

−τ

Xn(t− τ− s)ϕ′(s)ds+
tZ

0

Xn(t− τ− s)F(s)ds,

where Xn(t) is the solution of the equation (1) with identity initial condition, defined in Theorem 2.3.

3 CONTROLLABILITY OF THE LINEAR MATRIX SYSTEM WITH DELAY

3.1 GENERAL TERMS

Let X is the space of states of dynamic system; U is the set of the controlled effects (controls). Let
x = x(x0,u, t) is the vector that characterizes state of the dynamic system in moment of time t, by the
initial condition x0, x0 ∈ X , (x0 = x|t=t0) and by the control function u, u ∈U .

Definition 3.1 The state x0 is called controllable state in the class U (controlled state), if there are
exist such control u(x0) ∈U and the number T, t0 ≤ T that x(x0,u(x0),T ) = 0.

Definition 3.2 If every state x0 ∈ X of the dynamic system is controllable, then we say that the system
is controllable (controlled system).

Consider the following Cauchy’s problem:

ẋ(t) = Ax(t)+Ax(t− τ)+Bu(t), t ∈ [0,T ] , T < ∞,
x(0) = x0, x(t) = ϕ(t), −τ ≤ t < 0,

(4)



where x = (x1, ...,xn)T is the vector of phase coordinates, x∈ X, u(t) = (u1(t), ...,ur(t))T is the control
function, u ∈U , U is the set of piecewise-continuous functions; A,B are constant matrices of dimen-
sions (n×n), (n× r) respectively, τ is the constant delay.
Space of states Z of this system is the set of n-dimensional functions.

{x(θ), t− τ ≤ θ ≤ t} (5)

The space of the n-dimensional vectors x (phase space X) is subspace for Z. The initial state z0 of the
system (4) is determined by conditions

z0 = {x0(θ), x0(θ) = ϕ(θ), −τ ≤ θ < 0, x(0) = x0}. (6)

The state z = z(z0,u, t) of the system (4) in the space Z in moment of time t is defined by trajectory
segment (5) of phase space X .
Next considered, that the movement system (4) goes (t ≥ 0) in the space of continuous function. We
determined initial state (6) of the function ϕ(θ) as piecewise-continuous.
In accordance with specified definitions, state (6) of the system (4) is controllable if there exist such
control u ∈U that x(t)≡ 0, T − τ ≤ t ≤ T when T < ∞.

3.2 THE CONSTRUCTION OF CONTROL FOR SYSTEM WITH DELAY

Let we have the control system of differential matrix equation

ẋ(t) = Ax(t)+Ax(t− τ)+Bu(t), x(t) ∈ Rn, t ≥ 0, τ > 0. (7)

where x(t) = ϕ(t),−τ ≤ t ≤ 0,A,B are square constant matrices.

Remark 3.3 For convenience purpose, here and further, we say that x(t) is a vector of length n. All
next statements are proved in the same way for the case when x(t) = X(t) is a matrix of dimension
(n×n).

Theorem 3.4 [1] For controllability of linear system with delay (7) is necessary and sufficient to next
condition to hold: t ≥ (k−1)τ and rank(S) = n, where

S = {B (AB) (A2B) ... (Ak−1B) ...},

hence S is a matrix which was achieved by recording matrices B, AB, ..., Ak−1B, ... side by side.

Theorem 3.5 [1] Let t1 ≥ (k− 1)τ and the necessary and sufficient condition for controllability is
implemented:

rank(S) = rank
(
{B (AB) (A2B) ... (Ak−1B) ...}

)
= n.

Then the control function can be taken as

u(s) = [X0(t1− τ− s)B]T

 t1Z
0

X0(t1− τ− s)BBT [X0(t1− τ− s)]T ds

−1

µ, (8)

where

µ = x1−X0(t1)ϕ(−τ)−
0Z

−τ

X0(t1− τ− s)ϕ′(s)ds.



4 EXAMPLES

Let us consider few examples of controllability researches of the linear matrix systems with delay.

Example 4.1

Let us have the differential equation of 3-th degree with a constant delay:

ẋ(t) = Ax(t)+Ax(t−1)+Bu(t), where A =

 1 1 1
0 1 1
0 0 1

 , B =

 1 1 0
1 1 0
0 0 0

 .

As we see τ = 1,n = 3 and A is regular. We want to know if this system is controllable so let us check
the necessary and sufficient condition. We will find the matrix S:

S = {B (AB) (A2B) ... (Ak+1B) ...}=

 1 1 0
1 1 0
0 0 0

2 2 0
1 1 0
0 0 0

3 3 0
1 1 0
0 0 0

...
k k 0
1 1 0
0 0 0

...


We have, rank(S) = 2 , so the system is not controllable.

Example 4.2

Let us have the differential equation of 3-th degree with a constant delay:

ẋ(t) = Ax(t)+Ax(t−1)+Bu(t), where A =

 1 1 1
0 1 1
0 0 1

 , B =

 1 1 0
1 1 0
0 0 1

 .

As we see τ = 1,n = 3 and A is regular. It is easy to see that the necessary and sufficient condition for
controllability is implemented (because of full rank of the matrix B, matrix S have full rank too), so
the system is controllable.
Let us construct such control function, that move system in time moment t1 = 2 in point x1 = (1,1,1)T ,
using initial condition x0(t) = ϕ(t) = (0,0,0)T , −1 ≤ t ≤ 0. Using the result of the theorem (3.5) we
write:

u(t) = [X0(t1− τ− t)B]T

 t1Z
0

X0(t1− τ− s)BBT [X0(t1− τ− s)]T ds

−1

µ,

µ = x1−X0(t1)ϕ(−τ)−
0Z

−τ

X0(t1− τ− s)ϕ′(s)ds.

While ϕ(t) = (0,0,0)T , −1 ≤ t ≤ 0 then µ = (1,1,1)T . So, we have

u(t) = [X0(1− t)B]T

 2Z
0

X0(1− s)BBT [X0(1− s)]T ds

−1 1
1
1

 .

While t1 = 2, then k = 2 and, using (8) we can calculate

u(t) =

(
2(t +1)et +2(t2 − t−1)et−1 +1 2et +2(t−2)et−1 0
2(t +1)et +2(t2 − t−1)et−1 +1 2et +2(t−2)et−1 0
(t2 +2t)et +(t3 −3t +2)et−1 2tet +2(t−1)2et−1 2et +2(t−2)et−1

)(
0.05 −0.13 0.09
−0.13 0.38 −0.25
0.09 −0.25 0.18

)(
1
1
1

)
,

u(t) = 0.01

(
2(t +1)et +2(t2 − t−1)et−1 +1
2(t +1)et +2(t2 − t−1)et−1 +1
(t2 +2t +4)et +(t3 + t−6)et−1

)
.



5 CONCLUSION

In this paper a solution of the system in general form was built. The necessary and sufficient condition
for controllability of this system was defined and control was built. Two examples were given to
illustrate the proposed theory. Getting results analogous to the ones in sections 2 and 2 for equation
Ẋ(t) = AX(t)+BX(t− τ), where A,B are different matrices, remains an open problem.
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