
A PROGRESS IN EXISTENCE OF UNDOMINATED STRATEGIES

Chernikava Alena
Doctoral Degree Programme (2), FEEC BUT

E-mail: xcerni07@stud.feec.vutbr.cz

Supervised by: Martin Kovár
E-mail: kovar@feec.vutbr.cz

Abstract: In this paper we report a certain progress we reached in a problem of existence of undomi-
nated strategies in normal form games. We have improved and generalized a well-known theorem of
Herve Moulin ensuring the existence of undominated strategies in a normal form game if the set of
strategies of a player is compact and his utility function is continuous.
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1 INTRODUCTION

Undominated strategies play an important role in game theory as well as in many related engineer-
ing and economical applications. The theorem ensuring the existence of undominated strategies in
a normal form game under the assumption that the set of all strategies of a player is compact and
the utility function is continuous, belongs to the well-known and fundamental results. Perhaps it
could be difficult to say when the result was published first – at least, it was stated in 1981 in Herve
Moulin’s comprehensive textbook on game theory [8], and essentially it was also contained and used
in many other papers. The proof presented in the first edition of [8] was dependent on a combination
of relatively non-trivial results from measure theory, metric topology and mathematical analysis. In
the second, revised edition [9] of the same book, now there is stated a simplified proof using some
topological argumentation together with Zorn’s Lemma. However, the proof in [9] is unfortunately
incorrect, since it implicitly uses a non-valid argument that every chain (that is, a linearly ordered set)
contains a cofinal subsequence. The first uncountable ordinal ω1 is a proper counterexample witness-
ing that in general it is not true. The mistake itself is not very critical for game theory, since in metric
spaces, for which the classical results are usually formulated, the topology is first countable and hence
the sequences are still sufficient to fully describe the topology by means of the convergence. Never-
theless, the mentioned fact itself, was a source of inspiration for a revision of of the original Moulin’s
Theorem leading to its our generalization and improvement. A natural question how substantial our
improvement really is we will demonstrate on a simple example.

2 DEFINITIONS AND DENOTATIONS

Recall that an n-person game G in a normal or strategic form is denoted by the 2n-tuple G =
(X1,X2, . . . ,Xn,u1,u2, . . . ,un), where for each i ∈ {1,2, . . . ,n}, Xi is a non-empty set of strategies of
the i-th player and ui : Πn

j=1X j → R is his real valued utility, or pay-off function. Let i ∈ {1,2, . . . ,n}
and let xi,yi ∈ Xi be some strategies of the i-th player. We say that the strategy yi dominates the
strategy xi, if the following conditions holds:

(1) For any selection of strategies sk ∈ Xk, where k ∈ {1,2, . . . ,n}, k 6= i,

ui(s1,s2 . . . ,si−1,xi,si+1, . . . ,sn)≤ ui(s1,s2 . . . ,si−1,yi,si+1, . . . ,sn).



(2) For each k ∈ {1,2, . . . ,n}, k 6= i, there exists some strategy tk ∈ Xk such that

ui(t1, t2 . . . , ti−1,xi, ti+1, . . . , tn) < ui(t1, t2 . . . , ti−1,yi, ti+1, . . . , tn).

The strategy xi ∈ Xi of the i-th player is said to be undominated if there is no strategy yi ∈ Xi which
dominates xi. It should be noted that this kind of dominance is sometimes referred as a weak domi-
nance, in opposite to the strict dominance, which differs from the above defined notion at the condi-
tion (1) by the strict form < of the inequality. Two strategies xi,yi ∈ Xi are called equivalent, if for
any selection of strategies sk ∈ Xk, where k ∈ {1,2, . . . ,n}, k 6= i, it holds

ui(s1,s2 . . . ,si−1,xi,si+1, . . . ,sn) = ui(s1,s2 . . . ,si−1,yi,si+1, . . . ,sn).

(For more detail, see, for example, [2], [11].)

A binary relation on a set is called a preorder, if it is reflexive and transitive (and not necessarily
antisymmetric). Let A be a non-empty set, 4 be a preorder on A such that for every x,y ∈ A there
exists z∈A with x 4 z and y 4 z. Then we say that (A,4) is a directed set. A net in a topological space
X is an arbitrary mapping from a directed set to the space X . Recall that if f : X → Y is a continuous
mapping between topological spaces X , Y and ϕ is a net in X , having a cluster point x ∈ X , then f ◦ϕ

is a net in Y , having the corresponding cluster point y = f (x) ∈ Y . A family Φ of non-empty sets is
called a filter base if any intersection of two sets belonging to Φ contains a subset from Φ. Let X be
a topological space. We say that p ∈ X is a θ-cluster point of a filter base Φ in X , if for every closed
neighborhood H of p and every F ∈Φ, the intersection H∩F is non-empty. Similarly, p is a θ-cluster
point of a net ϕ(A,4), if for each closed neighborhood H of p and for each a ∈ A, there exists b ∈ A,
b < a, such that ϕ(b) ∈ H. Taking the ϕ-images of the principal upper sets ↑a = {b|b ∈ A,b < a}
one can easily convert the net ϕ(A,4) into a filter base, while the corresponding convergence and
θ-convergence notions will be preserved.

A topological space X is said to be compact, if every net or every filter base in X has a cluster point.
For more detail and other equivalent and well-known characterizations of compactness, especially
in terms of open covers, we refer the reader to [3]. We also remark that in a modern approach to
compactness, motivated by the growing interest of the theoretical computer scientists in topology, the
Hausdorff separation axiom is no longer assumed as a part of the definition of compactness (see, for
example, [16]). Recall that a topological space is almost compact [1] if every open filter base in X
has a cluster point. It is clear from the definition that every compact space is almost compact but not
vice versa, as the reader may check from a counterexample in [1]. Another counterexample we will
present also in this paper. The real line R, if not otherwise specified, we consider as a topological
space equipped with the natural, Euclidean topology, generated by all open intervals.

3 MAIN RESULT

Let us start with the following simple example. As we will show later, the existence of undominated
strategies of both players is not a consequence of the classical Moulin’s Theorem, but it follows from
our generalization.

Example 3.1 Consider a normal form game of two players with the same sets of strategies X1 = X2 =
[0,1)×{0}∪{1}×{0,1, . . .}. Let the corresponding utility functions of the players be

u1(x1,y1) =
x1

x1 + x2
·
(

8
9

)y2

, u2(x2,y2) =
x2

x1 + x2
·
(

9
11

)y1

.

It is easy to see that the pairs (1,n) ∈ Xi, where n ∈ {0,1, . . .} and i = 1,2, are equivalent, maximal
and undominated strategies of the i-th player. �



Theorem 3.2 Let G = (X1,X2, . . . ,Xn,u1,u2, . . . ,un) be a normal form game of n players. Suppose
that for some i ∈ {1,2, . . . ,n}, Xi is almost compact and the utility function ui is a continuous, real
valued function of the argument xi ∈ Xi. Then the i-th player has an undominated strategy.

The proof of Theorem 3.2 will be presented during author’s oral presentation. Now, let us demonstrate
the utility of our generalization of Moulin’s Theorem. Consider the game, described in the example.
Although the utility functions ui are continuous, the topology of Xi, induced from the real plane is
not compact. For instance, the sequence {(1,n)|n = 0,1,2, . . .} has no cluster point. Let us define
another topology on Xi, where i = 1,2, by the local base of a general point (x,y) ∈ Xi:

1. The point (0,0) has neighborhoods of the form [0,ε)×{0}, 0 < ε < 1.

2. For every x ∈ (0,1), the point (x,0) has neighborhoods of the form (x−ε,x+ε)×{0}, 0 < ε <
min{x,1− x}.

3. For every n = 0,1, . . . , the point (1,n) has neighborhoods having the form (1− ε,1)×{0}∪
{(1,n)}, where 0 < ε < 1.

The new topology on Xi is now similar to the Euclidean topology on the unit segment [0,1] but with
one important difference – the right end point of the “segment“ is present infinitely many times. The
space Xi is T1, but certainly non-Hausdorff and non-compact. Indeed, denoting Yn = [0,1)×{0}∪
{(1,n)}, the family {Yn|n = 0,1, . . .} is an open cover of Xi, having no finite subcover. However,
we can show that the new topology is almost compact. Let Ω be an open cover of Xi. The subspace
Y0 = [0,1]×{0} ⊆ Xi is compact since it is homeomorphous with the unit segment [0,1], so there
exists a finite subfamily {U1,U2, . . . ,Uk} ⊆ Ω with Y0 ⊆

Sk
j=1U j. Then there is r ∈ {1,2, . . . ,k} such

that (1,0) ∈Ur. But for every n = 1,2, . . . it follows (1,n) ∈ clUr, so the closures of {U1,U2, . . . ,Uk}
cover Xi, so Xi is almost compact. The utility functions ui are continuous functions of the argument
(xi,yi) since they are continuous on the open subspaces Yn = [0,1)×{0}∪{(1,n)} of Xi, n = 0,1, . . . ,
homeomorphous to [0,1]. Hence, the existence of the undominated strategies now follows from
Theorem 3.2.

4 CONCLUSION

Our previous considerations show that our generalization of Moulin’s Theorem significantly extends
the class of applicable tasks or problems. In addition they together with Example 3.1 demonstrate
that non-Hausdorff and non-Euclidean topologies are really very natural, just from the real life.
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