COMPILER OF AGENT HIGH LEVEL LANGUAGE

Robert Kalmar
Master Degree Programme (2), FIT BUT
E-mail: xkalmaO1l @stud.fit.vutbr.cz

Supervised by: FrantiSek Zbofil Jr.
E-mail: zborilf @fit.vutbr.cz

Abstract: This paper present new agent based programing languages for wireless sensor networks. A
low level language ALLL and a high level one called AHLL. There are explained the main concepts
of implementation a compiler from AHLL language to ALLL like intermediate code, optimization
and target code generation.

Keywords: ALLL, AHLL, Agent Low Level Language, Agent High Level Language, intermediate
code, compiler, programing language

INTRODUCTION

The aim of this paper is to present an implementation of a compiler from AHLL to ALLL language.
We will shortly present both languages, their purpose and some key features. In the following parts
we emphasise on main concepts used by implementing a compiler, design of intermediate code rep-
resentation used by this compiler and some techniques for implementing cycles and conditionals in
ALLL.

At this time we have designed AHLL language and implemented a complete compiler in Java from
AHLL to ALLL, but without any optimizations.

ALLL

ALLL [1] language was developed on FIT BUT. ALLL is an acronym from Agent Low Level Lan-
guage by which agent’s behaviour is controlled. This language [1] is designed to be as small as
possible due to minimal size of device’s dynamic memory, easily interpretable and the expressiveness
should correspond to today’s modern approaches to agent development as communication, reactivity
to changes, hierarchy of plans etc.

ALLL’s basic structure are plans. Plan is a sequence of actions in form of linear list enclosed in
brackets. Possible actions in ALLL are manipulation with knowledge base and plan base (addition and
deletion), direct or indirect plan execution, queries on knowledge base, platform service execution,
changing active register and communication with other agents (sending and receiving messages).

By indirect plan execution plans are stored in plan base. By platform service execution the list con-
tains name and parameters of the service. More information about ALLL can be found in [1, 4, 5]

AHLL

AHLL or Agent High Level Language compared to ALLL is designed to be more user friendly. It
was developed also for programing agents in WSN. The purpose wasn’t to design a completely new
language but more to pick an existing commonly known one, slightly redesign it for our purpose and
write a compiler from this language to ALLL.

AHLL is imperative [3, p. 41], block structured programing language. The program in AHLL consist
of plans that may have several parameters. They are defined with a keyword plan and the definition
have the form like definition of functions. The entry point of the program is defined by keyword
main. This special plan cannot have parameters.

AHLL support conditional statements i f-then and if-then-else. From loops AHLL support
well known while statement and foreach statement, for iterating over a sequence. Like most of
imperative languages AHLL allows usage of variables and evaluation of expressions.

REPRESENTING AHLL CONSTRUCTIONS IN ALLL

Just before we present a compiler implementation, we shortly show, how can be several structures
from AHLL represented in ALLL.

Firstly we start with representing variables. Variables in ALLL can be represented as a sequence in
form (name, value). Or we can use a special platform service for storing variables.

Conditional statement can be represented as action for evaluating the condition followed by sequence
of direct plan execution. In such a plans the first action is query on knowledge base for particular
condition. Only one plan will succeed, others will fail on this query.

Loops [4] are represented similarly but the plan containing condition evaluation and loop body is
stored in plan base because of the next iterations. The last action in this plan is indirect plan execution
of the same plan. Once the condition stops to be true this plan fails and no more iteration will be
executed.

COMPILER IMPLEMENTATION

Compilation process in common consists of few analysis of input source code, namely lexical, syn-
tactical and semantic, to determine program structure. There are plenty of generators to automatic
construction of lexers and parsers from EBNF representation, like Lex, Bison, ANTLR and much
more. In our case we used ANTLR tool for specifying AHLL language grammar and generating lex-
ical and syntactical analyzer of AHLL. The output of these analysis is Abstract Syntax Tree (AST),
which is the first form of intermediate representation of program by compilation process.

Semantic analyzer was written by us and it use recursive descent on the generated AST and transforms
AST into next intermediate representation of program called MIR code. It uses symbol stack structure
to store symbols and constants appeared in program. Stack structure is used because of variable
overlapping in scopes (plans, blocks etc.). Plan table and service table are used for storing information
about defined plans and services. There is also a symbol table structure, which contains references
for every symbol and constant defined in compiled program, but is mostly for debugging purpose
because MIR instructions that operate with symbols contains this references also.

INTERMEDIATE CODE

By the translation process the code is firstly transformed in its intermediate representation, usually
called intermediate code. The translation into an intermediate code is useful mostly for optimization
techniques which increases the program’s performance. There are several intermediate representa-
tions of codes. According to theirs level we can divide [2] them to High- (HIR),Medium- (MIR) and
Low-level (LIR) intermediate code. Examples of HIRs are Abstract syntax trees, MIRs 3-address
codes and LIRs some forms of abstract representation of machine instructions.

In 3AK conditions and loops [2] are represented via condition evaluation and GOTO label instruc-
tion. Butin ALLL there is no goto action, only sequences of actions and plans that can fail or succeed.

That is the reason we turned the conditional code in a form more as sequences and without GOTO.
Example of representing conditions:

MIR pseudo-code MIR example Translation into ALLL

if condition ID if a > 5 ID=1 @(#(rel, (g,&1,5)),
then—-actions send "agl" "Hello" ! (agl,Hello)

[else ID] else ID=1)@ (#(rel, (le,&l1,5)),
else—-actions a<-a+1 S$1,# (ari, (p,&1,1))

end-if ID end-if ID=1)

then-actions (or else—actions) are executed only when the condition is true (or false). This
sequence of 3AK instructions are in line with conditional code representation presented in section 4.

These 3AK instructions are suitable for most of optimization techniques, like constant folding, dead
and unreachable code elimination, register allocation and much more. They can be also easily trans-
lated into ALLL code as was shown in the example.

7 CONCLUSION

We presented 2 languages and a compiler between these languages. The following work will include
increasing performance of the generated programs by implementing some optimization techniques.
We already started this part of the project. The goal is to make a compiler able to generate optimized
ALLL code as effective (or more) as direct implementation of the algorithm in ALLL.

ACKNOWLEDGEMENT

This work was supported by the European Regional Development Fund (ERDF) within the frame of
project Center of excellence IT4Innovations (CZ.1.05/1.1.00/02.0070) as research plan
MSMO0021630528 and project FIT-S-11-1.

REFERENCES

(1]

(2]

(3]

(4]

(5]

Frantisek Zboril Jr., Vladimir Janousek, Radek Koci, Frantisek Zboril, and Zdenek Mazal. Frame-
work for model-based design of multi-agent systems. Int. J. Autonomic Comput., 1:140-162,
April 2009.

Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1997.

Peter Wegner. Concepts and paradigms of object-oriented programming. SIGPLAN OOPS Mess.,
1:7-87, August 1990.

FrantiSek Zbofil. Pldnovdni a komunikace v multiagentnich systémech. dizertacna praca, Brno,
FIT VUT v Brné¢, 2004.

FrantiSek Zboril, Radek Koci, V. FrantiSek Zboril, Vladimir Janousek, and Zdenék Mazal. T-
mass v.2, state of the art. In Second UKSIM European Symposium on Computer Modeling and
Simulation, page 6. IEEE Computer Society, 2008.

