
STATIC ANALYSIS OF ACCESS CONTROL LISTS

Tomáš Hozza
Master Degree Programme (2.), FIT BUT

E-mail: xhozza00@stud.fit.vutbr.cz

Supervised by: Ondřej Ryšavý
E-mail: rysavy@fit.vutbr.cz

Abstract: Some problems in configurations of network devices are difficult to identify. Access con-
trol lists present an important part of many configurations. Conflicts among rules of an access control
list can cause holes in security policy or quality of service. In this paper we focus on identifying and
classifying conflicts among rules of an access control list. Possible types of conflicts and algorithms
necessary to analyze all conflicts in a single access control list of one given device are discussed.
Discovering all possible types of conflicts is not a trivial task. We present optimized algorithm using
tries, based on existing research by Baboescu and Varghese. We implemented tool using tries based
algorithm for detecting conflicts among access control list rules of one given Cisco, HP or Juniper
device.

Keywords: static analysis, configuration of network devices, access control list, security policy

1 INTRODUCTION

Errors in configuration can result in complete malfunction of network device or some particular ser-
vice. The cases when network service is not working properly on first look are quite easy to identify.
But sometimes an error in configuration can cause malfunction of a service only in special condi-
tions. Such problems are hard to identify and tools such as simulation of computer networks are not
always sufficient. On the other hand, tools such as static analysis can be used to identify some errors
in configurations of network devices.

Access control lists (ACLs) present an important part of many configurations. Conflicts among ACL
rules can cause holes in security policy or quality of service. In our work we focus on detecting
conflicts among ACL rules using static analysis of a device configuration. We are able to detect all
possible conflicts between every pair of rules, such as shadowing, correlation, generalization, redun-
dancy and superimposing [1, 2]. Our solution is designed for five dimensional (source IP address,
destination IP address, source port, destination port, network protocol) ACL rules with two possible
actions (allow and deny) assuming that rules with less dimensions can be always expressed as five
dimensional rules.

2 SOLUTION METHOD

The presented approach consists of two main algorithms to solve the problem of detecting and clas-
sifying conflicts among ACL rules. First algorithm detects and classifies a type of conflict between
pair of rules or group of rules. For this purpose we chose algorithm based on classification by Al-
Shaer [1]. Disadvantage of this algorithm is that it analyzes only pairs of ACL rules therefore analysis
of whole ACL can not be done efficiently. There exist also some other algorithms that analyzes con-
flicts among more than two ACL rules, but do not detect all possible conflicts (mainly correlation)
[3]. Our main intention is to detect all possible conflicts therefore we have chosen less efficient but
complete conflict classification algorithm.



Second algorithm analyzes all possible pairs of rules in a single ACL. Analyzing conflicts among
all rules in one ACL is not a trivial task. For ACLs with small number of rules there is no problem
to analyze each pair of rules (time complexity O(n2) and Ω(n2)), but in case of large number of rules
there is need to find more efficient solution. Baboescu and Varghese presented a method using tries
which reduces number of analyzed pairs (time complexity O(n2 logn) and Ω(n logn)) [4]. Worst case
is when all rules are in conflict with each other.

2.1 AN ALGORITHM FOR COMPLETE ACL ANALYSIS

Tries based algorithm uses tries to reduce number of analyzed pairs of ACL rules assuming that all
rule fields are expressed as prefixes. Fields (IP addresses, ports) are usually expressed as ranges. It
is not a problem since every range can be converted to a prefix [5]. Method is based on the idea that
rules are in a conflict when there is partial or complete overlap in some of their corresponding fields.

The problem of finding conflicting rules is divided in k subproblems for k-dimensional rules. It builds
k one-dimensional tries associated with each field of ACL rule. Assuming we have an ACL with M
rules. In the trie Tl , for every dimension l = 1, ...,k, each node N associated with valid prefix contains
two bit vectors of size M. First bit vector (bitVector1) has a bit i set if and only if there is a ACL rule
Ri whose field l exactly match the node N prefix. The second bit vector (bitVector2) at a valid prefix
node N has the following value N.bitVector2 = (

⋃
C.bitVector2)∪N.bitVector1, where nodes C are

all immediate descendents of N that also represent valid prefix. In other words the second bit vector
computes the bitmap at node N corresponding to the union of the bit vectors associated with all valid
prefix nodes in the subtrie rooted at node N. Node at trie Tl is a valid prefix node if and only if there
exists at least one ACL rule Ri whose field l exactly match the node prefix.

After we have constructed tries for every dimension k of ACL rules it is possible to extract M-bit
conflicts bit vector (CBV) for every ACL rule R j. CBV for rule R j has bit i set if and only if there
is an ACL rule Ri in conflict with rule R j. CBV extraction is done for all ACL rules in all their
dimensions. For every field l = 1, ...,k of rule R j we begin extraction in root of the associated trie
with CBV set to zero. Subsequently as we are moving from the root to node exactly matching rule
field prefix, we union our CBV with bitVector1 at every valid prefix node. When we reached node
exactly matching rule R j field l prefix we union CBV with the node bitVector2. This way we extract
k CBVs and intersect them to get one final CBV for rule R j. Finally the conflict between rules R j and
Ri is classified, using conflict classification algorithm, for every bit i in final CBV which is set to one.

3 IMPLEMENTATION AND RESULTS

We implemented tool based on previously described tries based algorithm for detecting conflicts
among access control list rules. Conflict pairs are determined using conflicts bit vector and classified
using stated conflict classification algorithm based on classification by Al-Shaer [1]. Our intention
was to implement tool usable for checking ACLs with large number of rules. To save memory during
ACL analysis the Word-Aligned Hybrid (WAH) bitmap compression scheme [6] have been used for
bit vectors implementation. This scheme offers efficient in-memory representation scheme while
allowing fast bitwise logical operations (AND, OR, ...). As tool input is used a text file containing
a configuration of a network device with proper configuration file syntax. Tool output containing
information about detected conflicts is in form of XML file in order to allow further processing if
needed. Input and output have been implemented modularly with common interfaces therefore it is
possible to extend number of supported vendors and output formats in the future if needed.

Used scheme have been tested and compared with naive algorithm, which analyze every possible
pair of ACL rules, to proof reduction of analysed pairs of ACL rules. For testing we used randomly
generated ACLs of sizes 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 rules. Of each



size five different ACLs have been used and results have been averaged. Testing results are shown
in Figure 1.

Figure 1: Results of testing naive algorithm and tries based algorithm.

4 CONCLUSIONS

In this paper we have shown possibility of using static analysis to find errors in network device
configuration, especially conflicts among rules in ACL. We have implemented tool for configuration
analysis of Cisco, HP and Juniper devices. Our intention was to create a tool usable for ACLs with
large number of rules therefore it uses tries based algorithm. To save memory consumption during
ACL analysis the Word-Aligned Hybrid bitmap compression scheme have been used. Implemented
tool have been tested for reduction of analysed pairs of rules using randomly generated ACLs. It
would be more satisfying having real devices configurations for testing.

REFERENCES

[1] E.S. Al-Shaer and H.H. Hamed. Firewall policy advisor for anomaly discovery and rule editing.
In Integrated Network Management, 2003. IFIP/IEEE Eighth International Symposium on, pages
17-30, march 2003.

[2] Zhe Chen, Shize Guo, and Rong Duan. Research on the anomaly discovering algorithm of the
packet filtering rule sets. In Pervasive Computing Signal Processing and Applications (PCSPA),
2010 First International Conference on, pages 362-366, sept. 2010.

[3] S. Pozo, A.J. Varela-Vaca, and R.M. Gasca. A quadratic, complete, and minimal consistency di-
agnosis process for firewall acls. In Advanced Information Networking and Applications (AINA),
2010 24th IEEE International Conference on, pages 1037-1046, april 2010.

[4] F. Baboescu and G. Varghese. Fast and scalable conflict detection for packet classifiers. In Net-
work Protocols, 2002. Proceedings. 10th IEEE International Conference on, pages 270-279, nov.
2002.

[5] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer four switching. In
Proceedings of the ACM SIGCOMM ’98 conference on Applications, technologies, architectures,
and protocols for computer communication, SIGCOMM ’98, pages 191-202, New York, NY,
USA, 1998. ACM.

[6] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing bitmap indices with efficient com-
pression. ACM Trans. Database Syst., 31:1-38, March 2006.


