
GPU-BASED ACCELERATION OF THE GENETIC
ALGORITHM

Petr Pospíchal
Doctoral Degree Programme (1), FIT BUT

E-mail: ipospichal@fit.vutbr.cz

Supervised by: Josef Schwarz
E-mail: schwarz@fit.vutbr.cz

ABSTRACT

Genetic algorithm, a robust, stochastic optimization technique, is effective in solving many
practical problems in science, engineering, and business domains. Unfortunatelly, execution
usually takes long time. In this paper, we study a possibility of utilization consumer-level
graphics cards for acceleration of GAs. We have designed a mapping of the parallel island
genetic algorithm to the CUDA software model and tested our implementation on GeForce
8800GTX and GTX285 GPUs using a Rosenbrock’s, Griewank’s and Michalewicz’s benchmark
functions. Results indicates that our optimization leads to speedups up to seven thousand times
compared to single CPU thread while maintaing reasonable results quality.

1 INTRODUCTION

Genetic Algorithms (GA) [2] are powerful, domain-independent search techniques inspired by
Darwinian theory. In general, GAs employ selection, mutation, and crossover to generate new
search points in a state space. A genetic algorithm starts with a set of individuals that forms a
population of the algorithm. On every iteration of the algorithm, each individual is evaluated
using the fitness function and the termination function is invoked to determine whether the
termination criteria have been satisfied. The algorithm ends if an acceptable solutions have
been found or the computational resources have been spent.

Although GAs are very effective in solving many practical problems, their execution time can
become a limiting factor for some huge problems, because a lot of candidate solutions must be
evaluated.

There is variety of possibilities how to accelerate GAs. One of the most promising variant
is an island model parallelization. The island models can fully explore the computing power
of course grain parallel computers. The population is divided into a few subpopulations, and
each of them evolves separately on different processor. Island populations are free to converge
toward different sub-optima. The migration operator is supposed to mix good features that
emerge locally in the different subpopulations.

Driven by ever increasing requirements from the video game industry, GPUs have evolved into
a very powerful and flexible processors, while their price remained in the range of consumer



market. They now offer floating-point calculation much faster than today’s CPU and, beyond
graphics applications; they are very well suited to address general problems that can be ex-
pressed as data-parallel computations (i.e. the same code is executed on many different data
elements).

In this paper, we would like to show that consumer-level GPUs have a great potential for accel-
eration of the genetic algorithms.

2 GPU-BASED GENETIC ALGORITHM

We have chosen the CUDA (Compute Unified Device Architecture) [1] framework to imple-
ment our GA on GPU as it promises best achieved results so far.

The GPU is optimised to SIMD-type processing and contains hardware scheduler which swiftly
swaps existing threads to hide main memory latency. Because of this, a proposed model should
utilize thousands of parallel threads with minimum code branching. NVidia GPU consists of
multiprocessors capable to perform tasks in parallel. Threads running in these units are very
lightweight and can be synchronized using the barriers so that data consistency is maintained.

...block desynchronisation

...

...

main graphics memory - input population, migrating individuals, parameters

main memory on graphics card - output population

input

block0 = island0 block1=island1

barrier within block

threads = individuals

T0 T1 T2 TN

data
control

main memory = local data + textures + constants

GPU

processor1

re
g
is

te
rs

processor2

procesorM

shared instruction unit
and 

hardware scheduler

...

SIMD multiprocesor 0
SIMD multiprocesor 1

SIMD multiprocesor N

co
n
st

an
t 

ca
ch

e

te
xt

u
re

 c
ac

h
e 

sh
ar

ed
 m

em
o
ry

graphics card

host system

re
g
is

te
rs

re
g
is

te
rs

...

input, output

genetic algorithm kernel

fitness func. evaluation

selection

crossover

mutation

...

end?

yes

no

...

sh
a
re

d
 m

e
m

o
ry

 w
it

h
in

 m
u

lt
ip

ro
ce

ss
o
r

output

T0 T1 T2 TN

migration?

yes

no

migration/evaluation

Figure 1: Mapping of the genetic algorithm to CUDA hardware and software model.

The memory attached to graphics cards is divided into two levels — main memory and on-chip
memory. The main memory has a big capacity (hundreds of MB) and holds a complete set of
data as well as user programs. It also acts as an entry/output point during communication with
CPU. Unfortunately, big capacity is outweighed with high latency. On the other hand, the on-
chip memory is very fast, but has very limited size. Apart from per-thread local registers, the
on-chip memory contains particularly useful per-multiprocessor shared segments. This 16KB



array acts as a user managed L1 cache and, under some conditions, allows concurrent access for
whole group of threads. The size of on-chip memory is a strongly limiting factor for designing
efficient GA, but existing CUDA applications greatly benefit there.

In order to summarize earlier paragraphs, our primary concern during designing GA accelerated
by GPU is to create its efficient mapping to CUDA software model with a special focus on the
massive parallelism and usage of the shared memory within multiprocessors.

Fig. 1 shows the GA mapping to CUDA model. We assume an island based GA with asyn-
chronous migration along an unidirectional ring. Every individual is controlled by a single
CUDA thread. The local populations are stored in shared on-chip memory on particular GPU
multiprocessors (CUDA blocks). The local island populations as well as whole islands are
thereby evaluated entirely on GPU in parallel. This ensures both computationally intensive
execution and massive parallelism needed for the GPU to reach its full potential. As commu-
nication between CPU and GPU happens only during results exchange, this model also avoids
PCI express bandwidth bottleneck which drastically chokes performance of some existing ap-
plications [5, 8, 6].

3 RESULTS

Achievable speedups and solution quality of the proposed GA were examined using Griewank’s,
Michalewicz’s and Rosenbrock’s artificial benchmark functions that are often used for GA anal-
ysis. Reference CPU version of the GA is a single-thread program running on Core i7 920
implemented using well known GAlib library [7].

3.1 ACHIEVED PERFORMANCE

The speedup of our implementation was investigated using intel Core i7 920 processor and two
nVidia consumer-level graphics cards: 8800 GTX (16 multiprocessors / 128 cores) and GTX
285 (30 multiprocessors / 240 cores).

1 2 4 8 16 32 64 128 256 5121024
2

4
8

16
32

64
128

256

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

sp
ee

du
p 

w
rt

 C
P

U

max=[256,64]=3735.318
min=[1,2]=5.653

islands
(blocks)

individuals on island
(threads in block)

1 2 4 8 16 32 64 128 256 5121024
2

4
8

16
32

64
128

256

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

(a) 8800 GTX

1 2 4 8 16 32 64 128 256 5121024
2

4
8

16
32

64
128

256

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

sp
ee

du
p 

w
rt

 C
P

U

max=[1024,128]=7437.170
min=[1,2]=5.617

islands
(blocks)

individuals on island
(threads in block)

1 2 4 8 16 32 64 128 256 5121024
2

4
8

16
32

64
128

256

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

(b) GTX 285

Figure 2: Speedup on Griewank’s function depending on GA parameters and GPU.

The charts shown in Fig. 2 illustrate achieved speedups on two different GPUs against CPU,
based on population sizes and the number of simulated island. The 8800 GTX graphic card
saturates its computational resources from 256 islands and 32 individuals individuals per an



Table 1: Comparison of the solutions quality.
genes mean best fitness

Rosenbrock Michalewicz Griewank
CPU GPU1 GPU2 CPU GPU1 GPU2 CPU GPU1 GPU2

2 0.086 3.468 7.57·10−7 -1.022 -1.768 -1.801 0.0005 0.0020 3.99·10−12

3 1.897 4.996 0.447 -1.220 -2.336 -2.760 0.0051 0.0048 1.06·10−8

4 8.900 4.997 0.494 -1.459 -2.748 -3.696 0.0156 0.0188 1.22·10−7

5 22.112 17.332 2.042 -1.684 -3.184 -4.628 0.0246 0.0414 0.0001
6 48.450 56.045 4.313 -1.817 -3.654 -5.440 0.0408 0.0570 0.0005
7 83.455 42.509 6.903 -2.035 -3.646 -6.163 0.0479 0.0620 0.0012
8 128.710 155.233 9.257 -2.120 -3.805 -6.659 0.0650 0.1360 0.0027
9 167.329 131.737 12.045 -2.176 -4.830 -7.136 0.0749 0.1444 0.0042

10 233.364 184.370 15.379 -2.391 -5.009 -7.649 0.0805 0.1758 0.0058

island. The maximal speedup of 3735 against CPU is reached with 256 islands and 64 individ-
uals per island. The GTX285 provides about twice better peak speedup, but it is necessary to
provide much more computational work to it. The computational resources of this GPU are not
saturated even for 1024 islands and 128 individuals per island, where this GPU has attacked the
speedup of 74371. Situation is similar for Rosenbock’s resp. Michalewicz’s benchmark func-
tions as maximal speedup reaches 8674 resp. 7760 times in case of GTX285 and 4255 resp.
3957 times in case of 8800 GTX card. CUDA Profiler indicates approx. 99.8% instruction
throughput for maximal GPU performance.

3.2 SOLUTIONS QUALITY

The proposed implementation of the tournament selection slightly differs from the original
GAlib’s one. In order to ensure the same testing condition for the both CPU and GPU ver-
sions, the GAlib’s selection were reimplemented. Arithmetic crossover and mutation were kept
untouched as they have been defined in the same way.

Tests CPU and GPU1 were performed on artificial benchmark functions mentioned earlier on
a single island (obviously with no migrations) with 32 individuals, 70% crossover probability,
5% mutation probability and elitism turned off. Each run was terminated after 100 generations
of evolution and the best (lowest) fitness value was taken into consideration.

Test GPU2 was performed with the same GA parameters and benchmarks but with maximum
GPU exploitation resulting from simulating 1024 populations (islands) in parallel. Additionally,
migrations were performed every 10 generations with 3 individuals.

Table 1 shows the mean value over 100 measured runs. Lower values means better solutions for
all tested functions. Higher number of genes simulates rising problem complexity. Test GPU2
shows that the fully utilized GPU can achieve far better results in the same number of iterations.
Overall, GPU1 results are better than CPU by approx. 20%. This shows that proposed GPU
implementation of GA is able to optimise numerical functions.

1As it was mentioned earlier, a single threaded CPU implementation was tested. Benchmarked CPU Core i7
allows parallelisation to 4 physical cores + 4 virtual Hyper-Threading ones. Hence, ideally paralleled CPU version
with 50% speed benefit from HT technology would change the maximum speedup from 7437 to approx. 1239
times. GAlib also computes variety of additional statistics.



4 CONCLUSIONS

Speedups up to seven thousand times higher clearly show that GPUs have proven their abilities
for acceleration of genetic algorithms during optimization of simple numerical functions. The
results also show that the proposed GPU implementation of GA can provide better results in
the shorter time or produce better results in equal time. Peak GPU performance has more than
400-times better power-to-watt ratio, thus saving electrical energy during process. Furthermore,
used graphics card is hundreds times cheaper than any CPU grid at same speed. Solution can
be run at any of nVidia GPU supporting ShaderModel 4.0 and on both Linux and Windows
platform. Practically each problem, whose solution is codable to string of bits and where the
quality of two candidate solution can be compared, is solvable using genetic algorithms. The
area of potential applications of the proposed model is thereby very large.

ACKNOWLEDGEMENT

This research has been carried out under the financial support of the research grants “Natural
Computing on Unconventional Platforms”, GP103/10/1517 (2010-2013) of Grant Agency of
Czech Republic, “Security-Oriented Research in Infeormation Technology”, MSM 0021630-
528 (2007-13), the BUT FIT grant FIT-S-10-1 and the research plan MSM0021630528.

REFERENCES

[1] NVIDIA, C.: Compute Unified Device Architecture Programming Guide. NVIDIA: Santa
Clara, CA, 2007.

[2] Holland, J. H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

[3] Pharr, M. and Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation. Addison-Wesley Professional, 2005.

[4] Yu Q., Chen, C., and Pan Z.: Parallel genetic algorithms on programmable graphics hard-
ware. In Advances in Natural Computation ICNC 2005, Proceedings, Part III, volume 3612
of LNCS, pp 1051–1059, Changsha, August 27-29 2005.

[5] Li, J.-M., Wang, X.-J, He, R.-S. and Chi, Z.-X.: An efficient fine-grained parallel genetic
algorithm based on gpu-accelerated. In Network and Parallel Computing Workshops, 2007.
NPC Workshops. IFIP International Conference on, pp 855–862, 2007.

[6] Maitre, Q., Baumes, L.A., Lachiche, N., Corma, A. and Collet, P.: Coarse grain paralleliza-
tion of evolutionary algorithms on GPGPU cards with EASEA, In: Proceedings of the 11th
Annual conference on Genetic and evolutionary computation table of contents, Montreal,
Québec, Canada, 2009, pp. 1403-1410, ISBN 978-1-60558-325-9.

[7] Matthew, W.: GAlib: A C++ Library of Genetic Algorithm Components. Massachusetts
Institute of Technology, 1996.

[8] Wong, M.L and Wong, T. T.: Implementation of Parallel Genetic Algorithms on Graphics
Processing Units, In: Intelligent and Evolutionary Systems, Vol. 187/2009, Springer Berlin
/ Heidelberg, pp. 197-216, ISBN 978-3-540-95977-9.


