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ABSTRACT

We introduce parallel finite automata systems communicating by transitions. Similar systems
were already introduce, but the principle of communication were different. Simple question is,
if the possibility of this communication brings similarly results like by the earlier defined sys-
tems. In this paper we introduce, that the class of languages defined by parallel finite automata
systems communicating by transitions is a subset of the class of languages defined by n-right
linear simple matrix languages.

1 INTRODUCTION

Various types of grammar systems has been recently investigated in formal language theory
(see [5]). These systems consist of various types of grammars which cooperate and the systems
generates the language. On the other hand there are missing works about systems, thats combine
different types of automata. Works investigating automata systems already exist (see [6, 2]),
but the area of automata systems is not so comprehensive like the area of grammar systems.
Motivation of this work is that there are missing descriptions of automata systems, which has
the same expressing power like some already known grammar systems or grammars.

In this paper, we focus on the theory of parallel (communicating) automata systems, which
components are finite state machines. This components communicate by transition, when this
approach seems to be more natural then communication by states. And contrary of the systems
defined in [6] each component has only part of the input string. We define this systems and
prove their properties considering already known grammar systems or other grammar structures.
Paper is based on [1].

2 PRELIMINARIES

This Paper assumes that the reader is familiar with the formal language theory (see [7]). For an
alphabet V , V ∗ represents the free monoid generated by V under the operation of concatenation.
The identity of V ∗ is denoted by ε. Set V + = V ∗−{ε}. For a finite set A we denote by card(A)
the cardinality of A. For every ω ∈V ∗, |ω| denotes the length of ω.



A finite state machine (FSM) is a quintuple, M = (Q,Σ,R,s,F), where Q is a finite, non-empty
set of states. Σ is input alphabet (finite, non-empty set of symbols). R is the finite set of rules of
the form pa→ q, where p,q ∈ Q, a ∈ Σ∪{ε}. s ∈ Q is an initial state and F ⊆ Q is the set of
final states.

Right linear grammar is quadruple, G = (N,T,P,S), where N and T are two disjoint alphabets.
Symbols in N and T are referred to as nonterminals and terminals, respectively, and S ∈N is the
start symbol of G. P is a finite set of rules of the form x→ y, where x ∈ N and y ∈ T ∗∪T ∗N.
Strictly right linear grammar is a right linear grammar where P is a finite set of rules of the
form x→ y, x ∈ N and y ∈ T N∪{ε}.

For m,n ≥ 1 an m-parallel n-right linear simple matrix grammar (n-Pn-G) is an (mn + 3)-
tuple G = (N11, . . . ,N1n, . . . ,Nm1, . . . ,Nmn,T,S,P), where Ni j, 1 ≤ i ≤ m, 1 ≤ j ≤ n are mutu-
ally disjoint nonterminal alphabets, T is a terminal alphabet, S is a sentence symbol, S not in
N11 ∪ . . .∪Nmn ∪ T and P is a finite set of matrix rules. If m = 1 then we obtain an n-right
linear simple matrix grammar and if n = 1 then we obtain an m-parallel right linear grammar.
Definitions and properties of these grammars may be found in [3, 4], where is also definition of
slot grammar used hereafter.

3 DEFINITIONS

In this section, we define the fundamental notions of this paper. We introduce parallel finite
automata systems communicating by transitions. Components of these systems are finite state
automata.
Definition 3.1: A parallel finite automata system communicating by transitions (pc as f sa(n))
is an (n+1)-tuple AS = (Σ,A1,A2, . . . ,An), where Σ is the input alphabet, Ai = (Qi,Σ,Ri,si,Fi),
1 ≤ i ≤ n, are finite automata with the set of states Qi, si ∈ Qi (the initial state), Fi ⊆ Qi
(the set of final states) and Ri is the transition function of the automaton i defined as follows:
Ri = {pa→ q|p,q ∈ Qi,a ∈ Σ∪{ε}}∪{p c→ q|p,q ∈Qi,c ∈ ∪n

j=1Q j}, where p c→ q represents
communication rule. Note that

Tn
j=1 Q j = /0.

Definition 3.2: Let AS = (Σ,A1,A2, . . . ,An) be a pc as f sa(n). We define a set of communicat-
ing states of i-th component as follows: Ci = {q|q ∈ Qi∧∃(q

c→ r) ∈ Ri,c ∈ ∪n
j=1Q j,r ∈ Qi}.

Definition 3.3: Let AS = (Σ,A1,A2, . . . ,An) be a pc as f sa(n). We define a set of query states
of i-th component as follows: Ii = {c|c ∈ Qi∧∃ j|(q c→ r) ∈ R j,q,r ∈ Q j, j ∈ {1, . . . ,n}}.

The set Ci represent states, from them there is a possibility to communicate and the set Ii repre-
sent states, that may be a target of communication. The automata A1,A2, . . . ,An are called the
components of the system AS. If there exists just one 1≤ i≤ n such that Ci 6= /0, then the system
is said to be centralized, the master of this system being the component i.
Definition 3.4: Let AS = (Σ,A1,A2, . . . ,An) be a pc as f sa(n). Configuration of AS is a string
χ = q1v1q2v2 · · ·qnvn, where qi ∈Qi is the current state of component i, vi ∈ Σ∗ is the remaining
(unread) part of the input word appurtenant to the component i, i ∈ {1, . . . ,n}.
Definition 3.5: Let AS = (Σ,A1,A2, . . . ,An) be a pc as f sa(n). We define relation on the set of
configurations of AS in the following way: q1v1q2v2 · · ·qnvn ` p1u1 p2u2 · · · pnun, where qi, pi ∈
Qi, vi = aiui, ai ∈ Σ∪{ε}, vi,ui ∈ Σ∗, 1≤ i≤ n, iff one of the following conditions holds:

1. for all i, 1≤ i≤ n holds, that qi /∈Ci and exists ri = (qiai→ pi) ∈ Ri,



2. for all j, 1≤ j ≤ n, such that q j /∈C j exists r j = (q ja j→ p j) ∈ R j and for all the other i,
1 ≤ i ≤ n, such that qi ∈Ci exists ri such that: if ri = (qi

c→ pi) ∈ Ri then there exists k,
1≤ k ≤ n, such that c = qk, qk /∈Ck and vi = ui else ri = (qiai→ pi) ∈ Ri

Definition 3.6: Let AS = (Σ,A1,A2, . . . ,An) be a pc as f sa(n). The language accepted by
parallel finite automata system communicating by transitions AS, L(AS) is defined as

L(AS) = {w|s1v1s2v2 · · ·snvn `∗ f1 f2 · · · fn,w ∈ Σ
∗,v1v2 · · ·vn = w, fi ∈ Fi,1≤ i≤ n},

where `∗ denotes the reflexive and transitive closure of `.

We shall denote by pc as fsa(n) a parallel finite automata system (communicating by transitions)
of degree n and PC AS FSA(n) a class of languages accepted by pc as fsa(n).

4 COMPUTATIONAL POWER

In this section we show basic results related to parallel finite automata systems (communi-
cating by transition), we compare the computational power with the computational power of
m-parallel n-right linear simple matrix grammar.
Theorem 4.1: For each n-right linear simple matrix grammar G there exists parallel finite
automata system AS (communicating by states) of degree n, such that L(G) = L(AS).

Proof. Let G = (N1,N2, . . . ,Nn,T,S,P) be a n− RLSMG (see [3]), where Ni, 1 ≤ i ≤ n are
mutually disjoint nonterminal alphabets, T is a terminal alphabet, S is a sentence symbol, S
not in N1 ∪ ·· · ∪Nn ∪T and P is a finite set matrix rules. A matrix rule can be in one of the
following three forms:

i. [S→ X1 · · ·Xn], Xi ∈ Ni, 1≤ i≤ n,

ii. [X1→ a1, . . . ,Xn→ an], Xi ∈ Ni, ai ∈ T ∗, 1≤ i≤ n,

iii. [X1→ a1Y1, . . . ,Xn→ anYn], Xi,Yi ∈ Ni, ai ∈ T ∗, 1≤ i≤ n.

Proof has two parts. First, we prove, that for each n−RLSMG G there exists an equivalent
(except for homomorphism h defined hereafter) n− RLSMG G′ containing rules of specific
form. After that we prove, that for this G′ there exists pc as f sa AS, such that L(G′) = L(AS).
Let G be a n−RLSMG defined above. For this G construct n−RLSMG G′ = (N′1,N

′
2, . . . ,N

′
n,

T ′,S,P′), such that N′i = Ni∪{X j
ik |1≤ j ≤ card(P),

1≤ k ≤ (2n−2)}, 1≤ i≤ n, T ′ = T ∪{A|A ∈
Sn

i=1 N′i} and P′ contains following rules:

i. r = [S→ X1 · · ·Xn], Xi ∈ Ni, 1≤ i≤ n, iff r ∈ P,

ii. r j1 = [X1→ a1X j
11

,X2→ X j
21

, . . . ,Xn→ X j
n1],

r j2 = [X j
11
→ X j

12
,X j

21
→ X j

11
X j

22
, . . . ,X j

n1 → X j
11

X j
n2],

r j3 = [X j
12
→ X j

13
,X j

22
→ a2X j

23
, . . . ,X j

n2 → X j
n3],

...
r j2n−2 = [X j

12n−3
→ X j

n−12n−3
X j

12n−2
, . . . ,X j

n2n−3 → X j
n−12n−3

X j
n2n−2],



r j2n−1 = [X j
12n−2

→ ε,X j
22n−2

→ ε, . . . ,X j
n2n−2 → an],

iff exists j, 1≤ j ≤ card(P), such that
r j = [X1→ a1,X2→ a2, . . . ,Xn→ an] ∈ P, Xi ∈ Ni, ai ∈ T ∗, 1≤ i≤ n,

iii. and similarly for the last form of matrix rules.

Let h be a total function from T ′∗ to T ∗ such that h(uv) = h(u)h(v) for every u,v ∈ T ′∗. h is a
homomorphism, such that h(a) = a for every a ∈ T and h(a) = ε for every a ∈ T ′\T .
Claim 4.1: Let S⇒m w1w2 . . .wn in G, where m≥ 0, wi = tiui, ti ∈ T ∗, ui ∈ Ni∪{ε}, 1≤ i≤ n.
Then S⇒(2n−1)(m−1)+1 v1v2 . . .vn in G′, where vi = t ′iui, h(t ′i) = ti, t ′i ∈ T ′.

Proof. Claim 4.1 is proved by induction:

Basic: Let m = 1. Then S⇒1 X1 · · ·Xn in G. Observe that S⇒1 X1 · · ·Xn in G′.

Induction hypothesis: Assume that Claim 4.1 holds for all m-step derivations, where m =
0, . . . ,k for some k ≥ 0.

Induction step: Consider S⇒k+1 y1y2 · · ·yn in G. Then there is sentential form u1A1u2A2 · · ·unAn
in G, where ui ∈ T ∗, Ai ∈ Ni, such that S ⇒k u1A1u2A2 · · ·unAn ⇒ u1x1u2x2 · · ·unxn, where
uixi = yi, for all i = 1, . . . ,n.

1. S⇒k u1A1u2A2 · · ·unAn in G implies S⇒(2n−1)(k−1)+1 u′1A1u′2A2 · · ·u′nAn in G′, where ui =
h(u′i), 1≤ i≤ n.

2.Let u1A1u2A2 · · ·unAn⇒ u1x1u2x2 · · ·unxn in G. Then there holds: [A1→ x1, . . . ,An→ xn] ∈
P, and it implies that [A1 → y1A j

11
, . . . ,An → A j

n1] ∈ P′, [A j
11
→ A j

12
, . . . ,A j

n1 → A j
11

A j
n2] ∈ P′,

. . ., [A12n−2 → z1, . . . ,A
j
n2n−2 → xn] ∈ P′, where xi = yizi, yi ∈ T ∗, zi ∈ Ni ∪{ε}, 1 ≤ i ≤ n, for

some 1≤ j ≤ card(P). So u′1A1u′2A2 · · ·u′nAn⇒2n−1 u′1y1y1z1u′2y2y2z2 · · ·u′nynynzn in G′, where
ui = h(u′i), xi = yih(yi)zi = yizi.

1. and 2. imply that S⇒(2n−1)(k−1)+1 u′1A1u′2A2 · · ·u′nAn ⇒2n−1 u′1y1y1z1u′2y2y2z2 · · ·u′nynynzn

thus S⇒(2n−1)(k+1−1)+1 u′1y1y1z1u′2y2y2z2 · · ·u′nynynzn, where h(u′1y1y1)z1h(u′2y2y2)z2 · · ·h(u′n
ynyn)zn = u1x1 . . .unxn.
Claim 4.2: For every n−RLSMG G′ defined above there exists pc as f sa(n) AS, AS = (Σ,A1,
. . . ,An), Ai = (Qi,Σ,Ri,Si,Fi), 1≤ i≤ n, such that if S⇒m w1w2 · · ·wn in G′, where wi = u′iq

′
i,

u′i ∈ T ′∗ q′i ∈ N′i ∪{ε}, 1≤ i≤ n, then S1u1S2u2 . . .Snun `m q1q2 · · ·qn in AS, where ui = h(u′i) ∈
Σ∗, qi ∈ Qi, for all 1≤ i≤ n.

Proof. This Claim is proved by induction. For the sake of simplicity consider that G′ is n-strictly
right linear simple matrix grammar. Let G′ = (N′1,N

′
2, . . . ,N

′
n,T
′,S,P′) (as defined above), then

G′ consists of n slot grammars (see [3]), of the form Gi = (N′i ∪{Si},T ′,Si,P′i ), where Si = S,
Si /∈N′i , P′i = {Si→Xi|[S→X1 · · ·Xi · · ·Xn]∈P′}∪{Xi→ xi|[X1→ x1, . . .Xi→ xi, . . . ,Xn→ xn]∈
P′}. For each component of AS Ai = (Qi,Σ,Ri,Si,Fi), let Qi = N′i ∪{Si}, Σ = T , Ri = {pa→
q|(p→ aq) ∈ P′i}∪{p c→ q|(p→ cq) ∈ P′i}, Fi = {q|(q→ ε) ∈ P′i}. We just used an generally
known algorithm for converting strictly right linear grammar to a non-deterministic finite state
machine.

Basic: Let m = 0. Then S⇒0 S in G′. Observe that S1S2 · · ·Sn `0 S1S2 · · ·Sn in AS.

Induction hypothesis: Assume that Claim 4.2 holds for all m-step derivations, where m =
0, . . . ,k, for some k ≥ 0.



Induction step: Consider S ⇒k+1 x′1u′1q1 · · ·x′nu′nqn in G′, then there exists sentential form
x′1 p1 · · ·x′n pn in G′, where pi ∈ N′i such that S⇒k x′1 p1 · · ·x′n pn⇒ x′1u′1q1 · · ·x′nu′nqn in G′.

1. S⇒k x′1 p1 · · ·x′n pn in G′ implies S1x1S2x2 . . .Snxn `k p1 p2 · · · pn in AS, xi = h(x′i), for all
i = 1, . . . ,n by the induction hypothesis.

2. Let x′1 p1 · · ·x′n pn⇒ x′1u′1q1 · · ·x′nu′nqn in G′. Then, there holds (pi→ u′iqi) ∈ P′i . Algorithm
used by definition of AS implies that (piui ` qi) ∈ Ri, ui ∈ Σ if ui = h(u′i), or (pi

c→ qi), u′i = c if
ε = h(u′i) for all i = 0, . . . ,n. So p1u1 · · · pnun ` q1 · · ·qn in AS.

1. and 2. imply that S1x1u1S2x2u2 . . .Snxnun `k+1 q1q2 · · ·qn, where xiui = h(x′iu
′
i), 1≤ i≤ n.

Consider Claim 4.1 with m ≥ 0, wi ∈ T ∗, for all 1 ≤ i ≤ n. At this point, if S⇒m w1 · · ·wn in
G, then S⇒(2n−1)(m−1)+1 v1 · · ·vn in G′, where h(vi) = wi, for all 1 ≤ i ≤ n. Hence L(G) ⊆
h(L(G′)). Consider Claim 4.2 with m ≥ 0, w1 ∈ T ′∗, for all 1 ≤ i ≤ n. At this point, if S⇒m

w1 · · ·wn in G′, then S1u1 · · ·Snun `m q1 · · ·qn in AS, where ui = h(wi), qi ∈ Fi, for all 1≤ i≤ n.
Hence h(L(G′))⊆ L(AS). L(G)⊆ h(L(G′)) and h(L(G′))⊆ L(AS) imply L(G)⊆ L(AS).

Hence R[n] ⊆ PS AS FSA(n), where R[n] denotes the family (class) of n−RLSMG.

5 CONCLUSION

We introduced parallel finite systems communicating by transitions and we have showed in
Theorem 4.1, which has been proven, that the class of languages accepted by n-parallel finite
automata systems is a subset of class of languages generated by n-right linear simple matrix
languages. And from [1] we already know, that these classes are equivalent and because classes
of languages generated by n− RLSMG forms a hierarchy, where R[n] ⊂ R[n+1], then for the
classes of languages accepted by pc as f sa(n) holds that PS AS FSA(n)⊂ PS AS FSA(n+1).
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