PARALLEL FINITE AUTOMATA SYSTEMS COMMUNICATING BY TRANSITIONS

Patrik Petřík
Doctoral Degree Programme (1), FIT BUT
E-mail: ipetrik@fit.vutbr.cz
Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract

We introduce parallel finite automata systems communicating by transitions. Similar systems were already introduce, but the principle of communication were different. Simple question is, if the possibility of this communication brings similarly results like by the earlier defined systems. In this paper we introduce, that the class of languages defined by parallel finite automata systems communicating by transitions is a subset of the class of languages defined by n-right linear simple matrix languages.

1 INTRODUCTION

Various types of grammar systems has been recently investigated in formal language theory (see [5]). These systems consist of various types of grammars which cooperate and the systems generates the language. On the other hand there are missing works about systems, thats combine different types of automata. Works investigating automata systems already exist (see [6, 2]), but the area of automata systems is not so comprehensive like the area of grammar systems. Motivation of this work is that there are missing descriptions of automata systems, which has the same expressing power like some already known grammar systems or grammars.

In this paper, we focus on the theory of parallel (communicating) automata systems, which components are finite state machines. This components communicate by transition, when this approach seems to be more natural then communication by states. And contrary of the systems defined in [6] each component has only part of the input string. We define this systems and prove their properties considering already known grammar systems or other grammar structures. Paper is based on [1].

2 PRELIMINARIES

This Paper assumes that the reader is familiar with the formal language theory (see [7]). For an alphabet V, V^{*} represents the free monoid generated by V under the operation of concatenation. The identity of V^{*} is denoted by ε. Set $V^{+}=V^{*}-\{\varepsilon\}$. For a finite set A we denote by $\operatorname{card}(A)$ the cardinality of A. For every $\omega \in V^{*},|\omega|$ denotes the length of ω.

A finite state machine ($F S M$) is a quintuple, $M=(Q, \Sigma, R, s, F)$, where Q is a finite, non-empty set of states. Σ is input alphabet (finite, non-empty set of symbols). R is the finite set of rules of the form $p a \rightarrow q$, where $p, q \in Q, a \in \Sigma \cup\{\varepsilon\} . s \in Q$ is an initial state and $F \subseteq Q$ is the set of final states.
Right linear grammar is quadruple, $G=(N, T, P, S)$, where N and T are two disjoint alphabets. Symbols in N and T are referred to as nonterminals and terminals, respectively, and $S \in N$ is the start symbol of G. P is a finite set of rules of the form $x \rightarrow y$, where $x \in N$ and $y \in T^{*} \cup T^{*} N$. Strictly right linear grammar is a right linear grammar where P is a finite set of rules of the form $x \rightarrow y, x \in N$ and $y \in T N \cup\{\varepsilon\}$.

For $m, n \geq 1$ an m-parallel n-right linear simple matrix grammar (n-Pn- G) is an ($m n+3$)tuple $G=\left(N_{11}, \ldots, N_{1 n}, \ldots, N_{m 1}, \ldots, N_{m n}, T, S, P\right)$, where $N_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$ are mutually disjoint nonterminal alphabets, T is a terminal alphabet, S is a sentence symbol, S not in $N_{11} \cup \ldots \cup N_{m n} \cup T$ and P is a finite set of matrix rules. If $m=1$ then we obtain an n-right linear simple matrix grammar and if $n=1$ then we obtain an m-parallel right linear grammar. Definitions and properties of these grammars may be found in [3, 4], where is also definition of slot grammar used hereafter.

3 DEFINITIONS

In this section, we define the fundamental notions of this paper. We introduce parallel finite automata systems communicating by transitions. Components of these systems are finite state automata.
Definition 3.1: A parallel finite automata system communicating by transitions (pc as $f s a(n)$) is an $(n+1)$-tuple $A S=\left(\Sigma, A_{1}, A_{2}, \ldots, A_{n}\right)$, where Σ is the input alphabet, $A_{i}=\left(Q_{i}, \Sigma, R_{i}, s_{i}, F_{i}\right)$, $1 \leq i \leq n$, are finite automata with the set of states $Q_{i}, s_{i} \in Q_{i}$ (the initial state), $F_{i} \subseteq Q_{i}$ (the set of final states) and R_{i} is the transition function of the automaton i defined as follows: $R_{i}=\left\{p a \rightarrow q \mid p, q \in Q_{i}, a \in \Sigma \cup\{\varepsilon\}\right\} \cup\left\{p \xrightarrow{c} q \mid p, q \in Q_{i}, c \in \cup_{j=1}^{n} Q_{j}\right\}$, where $p \xrightarrow{c} q$ represents communication rule. Note that $\bigcap_{j=1}^{n} Q_{j}=\emptyset$.
Definition 3.2: Let $A S=\left(\Sigma, A_{1}, A_{2}, \ldots, A_{n}\right)$ be a pc as $f s a(n)$. We define a set of communicating states of i-th component as follows: $C_{i}=\left\{q \mid q \in Q_{i} \wedge \exists(q \xrightarrow{c} r) \in R_{i}, c \in \cup_{j=1}^{n} Q_{j}, r \in Q_{i}\right\}$.
Definition 3.3: Let $A S=\left(\Sigma, A_{1}, A_{2}, \ldots, A_{n}\right)$ be a pc as $f s a(n)$. We define a set of query states of i-th component as follows: $I_{i}=\left\{c\left|c \in Q_{i} \wedge \exists j\right|(q \xrightarrow{c} r) \in R_{j}, q, r \in Q_{j}, j \in\{1, \ldots, n\}\right\}$.

The set C_{i} represent states, from them there is a possibility to communicate and the set I_{i} represent states, that may be a target of communication. The automata $A_{1}, A_{2}, \ldots, A_{n}$ are called the components of the system $A S$. If there exists just one $1 \leq i \leq n$ such that $C_{i} \neq \emptyset$, then the system is said to be centralized, the master of this system being the component i.
Definition 3.4: Let $A S=\left(\Sigma, A_{1}, A_{2}, \ldots, A_{n}\right)$ be a pc as $f s a(n)$. Configuration of $A S$ is a string $\chi=q_{1} v_{1} q_{2} v_{2} \cdots q_{n} v_{n}$, where $q_{i} \in Q_{i}$ is the current state of component $i, v_{i} \in \Sigma^{*}$ is the remaining (unread) part of the input word appurtenant to the component $i, i \in\{1, \ldots, n\}$.
Definition 3.5: Let $A S=\left(\Sigma, A_{1}, A_{2}, \ldots, A_{n}\right)$ be a $p c$ as $f s a(n)$. We define relation on the set of configurations of $A S$ in the following way: $q_{1} v_{1} q_{2} v_{2} \cdots q_{n} v_{n} \vdash p_{1} u_{1} p_{2} u_{2} \cdots p_{n} u_{n}$, where $q_{i}, p_{i} \in$ $Q_{i}, v_{i}=a_{i} u_{i}, a_{i} \in \Sigma \cup\{\varepsilon\}, v_{i}, u_{i} \in \Sigma^{*}, 1 \leq i \leq n$, iff one of the following conditions holds:

1. for all $i, 1 \leq i \leq n$ holds, that $q_{i} \notin C_{i}$ and exists $r_{i}=\left(q_{i} a_{i} \rightarrow p_{i}\right) \in R_{i}$,
2. for all $j, 1 \leq j \leq n$, such that $q_{j} \notin C_{j}$ exists $r_{j}=\left(q_{j} a_{j} \rightarrow p_{j}\right) \in R_{j}$ and for all the other i, $1 \leq i \leq n$, such that $q_{i} \in C_{i}$ exists r_{i} such that: if $r_{i}=\left(q_{i} \xrightarrow{c} p_{i}\right) \in R_{i}$ then there exists k, $1 \leq k \leq n$, such that $c=q_{k}, q_{k} \notin C_{k}$ and $v_{i}=u_{i}$ else $r_{i}=\left(q_{i} a_{i} \rightarrow p_{i}\right) \in R_{i}$

Definition 3.6: Let $A S=\left(\Sigma, A_{1}, A_{2}, \ldots, A_{n}\right)$ be a $p c$ as $f s a(n)$. The language accepted by parallel finite automata system communicating by transitions $A S, \mathcal{L}(A S)$ is defined as

$$
\mathcal{L}(A S)=\left\{w \mid s_{1} v_{1} s_{2} v_{2} \cdots s_{n} v_{n} \vdash^{*} f_{1} f_{2} \cdots f_{n}, w \in \Sigma^{*}, v_{1} v_{2} \cdots v_{n}=w, f_{i} \in F_{i}, 1 \leq i \leq n\right\}
$$

where \vdash^{*} denotes the reflexive and transitive closure of \vdash.
We shall denote by pc as $f s a(n)$ a parallel finite automata system (communicating by transitions) of degree n and $P C A S F S A(n)$ a class of languages accepted by $p c$ as $f s a(n)$.

4 COMPUTATIONAL POWER

In this section we show basic results related to parallel finite automata systems (communicating by transition), we compare the computational power with the computational power of m-parallel n-right linear simple matrix grammar.
Theorem 4.1: For each n-right linear simple matrix grammar G there exists parallel finite automata system $A S$ (communicating by states) of degree n, such that $\mathcal{L}(G)=\mathcal{L}(A S)$.

Proof. Let $G=\left(N_{1}, N_{2}, \ldots, N_{n}, T, S, P\right)$ be a $n-R L S M G$ (see [3]), where $N_{i}, 1 \leq i \leq n$ are mutually disjoint nonterminal alphabets, T is a terminal alphabet, S is a sentence symbol, S not in $N_{1} \cup \cdots \cup N_{n} \cup T$ and P is a finite set matrix rules. A matrix rule can be in one of the following three forms:
i. $\left[S \rightarrow X_{1} \cdots X_{n}\right], X_{i} \in N_{i}, 1 \leq i \leq n$,
ii. $\left[X_{1} \rightarrow a_{1}, \ldots, X_{n} \rightarrow a_{n}\right], X_{i} \in N_{i}, a_{i} \in T^{*}, 1 \leq i \leq n$,
iii. $\left[X_{1} \rightarrow a_{1} Y_{1}, \ldots, X_{n} \rightarrow a_{n} Y_{n}\right], X_{i}, Y_{i} \in N_{i}, a_{i} \in T^{*}, 1 \leq i \leq n$.

Proof has two parts. First, we prove, that for each $n-R L S M G G$ there exists an equivalent (except for homomorphism h defined hereafter) $n-R L S M G G^{\prime}$ containing rules of specific form. After that we prove, that for this G^{\prime} there exists pc as fsa $A S$, such that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(A S)$. Let G be a $n-R L S M G$ defined above. For this G construct $n-R L S M G G^{\prime}=\left(N_{1}^{\prime}, N_{2}^{\prime}, \ldots, N_{n}^{\prime}\right.$, $\left.T^{\prime}, S, P^{\prime}\right)$, such that $N_{i}^{\prime}=N_{i} \cup\left\{X_{i_{k}}^{j} \mid 1 \leq j \leq \operatorname{card}(P)\right.$, $1 \leq k \leq(2 n-2)\}, 1 \leq i \leq n, T^{\prime}=T \cup\left\{\bar{A} \mid A \in \bigcup_{i=1}^{n} N_{i}^{\prime}\right\}$ and P^{\prime} contains following rules:
i. $r=\left[S \rightarrow X_{1} \cdots X_{n}\right], X_{i} \in N_{i}, 1 \leq i \leq n$, iff $r \in P$,
ii. $r_{j_{1}}=\left[X_{1} \rightarrow a_{1} X_{1_{1}}^{j}, X_{2} \rightarrow X_{2_{1}}^{j}, \ldots, X_{n} \rightarrow X_{n_{1}}^{j}\right]$,
$r_{j_{2}}=\left[X_{1_{1}}^{j} \rightarrow X_{1_{2}}^{j}, X_{2_{1}}^{j} \rightarrow \overline{X_{1_{1}}^{j}} X_{2_{2}}^{j}, \ldots, X_{n_{1}}^{j} \rightarrow \overline{X_{1_{1}}^{j}} X_{n_{2}}^{j}\right]$,
$r_{j_{3}}=\left[X_{1_{2}}^{j} \rightarrow X_{1_{3}}^{j}, X_{2_{2}}^{j} \rightarrow a_{2} X_{2_{3}}^{j}, \ldots, X_{n_{2}}^{j} \rightarrow X_{n_{3}}^{j}\right]$,
\vdots

$$
\dot{r}_{j_{2 n-2}}=\left[X_{1_{2 n-3}}^{j} \rightarrow \overline{X_{n-1_{2 n-3}}^{j}} X_{1_{2 n-2}}^{j}, \ldots, X_{n_{2 n-3}}^{j} \rightarrow \overline{X_{n-1_{2 n-3}}^{j}} X_{n_{2 n-2}}^{j}\right],
$$

$r_{j_{2 n-1}}=\left[X_{1_{2 n-2}}^{j} \rightarrow \varepsilon, X_{2_{2 n-2}}^{j} \rightarrow \varepsilon, \ldots, X_{n_{2 n-2}}^{j} \rightarrow a_{n}\right]$,
iff exists $j, 1 \leq j \leq \operatorname{card}(P)$, such that
$r_{j}=\left[X_{1} \rightarrow a_{1}, X_{2} \rightarrow a_{2}, \ldots, X_{n} \rightarrow a_{n}\right] \in P, X_{i} \in N_{i}, a_{i} \in T^{*}, 1 \leq i \leq n$,
iii. and similarly for the last form of matrix rules.

Let h be a total function from $T^{* *}$ to T^{*} such that $h(u v)=h(u) h(v)$ for every $u, v \in T^{*} . h$ is a homomorphism, such that $h(a)=a$ for every $a \in T$ and $h(\bar{a})=\varepsilon$ for every $\bar{a} \in T^{\prime} \backslash T$.
Claim 4.1: Let $S \Rightarrow^{m} w_{1} w_{2} \ldots w_{n}$ in G, where $m \geq 0, w_{i}=t_{i} u_{i}, t_{i} \in T^{*}, u_{i} \in N_{i} \cup\{\varepsilon\}, 1 \leq i \leq n$.
Then $S \Rightarrow^{(2 n-1)(m-1)+1} v_{1} v_{2} \ldots v_{n}$ in G^{\prime}, where $v_{i}=t_{i}^{\prime} u_{i}, h\left(t_{i}^{\prime}\right)=t_{i}, t_{i}^{\prime} \in T^{\prime}$.
Proof. Claim 4.1 is proved by induction:
Basic: Let $m=1$. Then $S \Rightarrow^{1} X_{1} \cdots X_{n}$ in G. Observe that $S \Rightarrow{ }^{1} X_{1} \cdots X_{n}$ in G^{\prime}.
Induction hypothesis: Assume that Claim 4.1 holds for all m-step derivations, where $m=$ $0, \ldots, k$ for some $k \geq 0$.
Induction step: Consider $S \Rightarrow^{k+1} y_{1} y_{2} \cdots y_{n}$ in G. Then there is sentential form $u_{1} A_{1} u_{2} A_{2} \cdots u_{n} A_{n}$ in G, where $u_{i} \in T^{*}, A_{i} \in N_{i}$, such that $S \Rightarrow^{k} u_{1} A_{1} u_{2} A_{2} \cdots u_{n} A_{n} \Rightarrow u_{1} x_{1} u_{2} x_{2} \cdots u_{n} x_{n}$, where $u_{i} x_{i}=y_{i}$, for all $i=1, \ldots, n$.

1. $S \Rightarrow^{k} u_{1} A_{1} u_{2} A_{2} \cdots u_{n} A_{n}$ in G implies $S \Rightarrow^{(2 n-1)(k-1)+1} u_{1}^{\prime} A_{1} u_{2}^{\prime} A_{2} \cdots u_{n}^{\prime} A_{n}$ in G^{\prime}, where $u_{i}=$ $h\left(u_{i}^{\prime}\right), 1 \leq i \leq n$.
2.Let $u_{1} A_{1} u_{2} A_{2} \cdots u_{n} A_{n} \Rightarrow u_{1} x_{1} u_{2} x_{2} \cdots u_{n} x_{n}$ in G. Then there holds: $\left[A_{1} \rightarrow x_{1}, \ldots, A_{n} \rightarrow x_{n}\right] \in$ P, and it implies that $\left[A_{1} \rightarrow y_{1} A_{1_{1}}^{j}, \ldots, A_{n} \rightarrow A_{n_{1}}^{j}\right] \in P^{\prime},\left[A_{1_{1}}^{j} \rightarrow A_{1_{2}}^{j}, \ldots, A_{n_{1}}^{j} \rightarrow \overline{A_{1_{1}}^{j}} A_{n_{2}}^{j}\right] \in P^{\prime}$, $\ldots,\left[A_{1_{2 n-2}} \rightarrow z_{1}, \ldots, A_{n_{2 n-2}}^{j} \rightarrow x_{n}\right] \in P^{\prime}$, where $x_{i}=y_{i} z_{i}, y_{i} \in T^{*}, z_{i} \in N_{i} \cup\{\varepsilon\}, 1 \leq i \leq n$, for some $1 \leq j \leq \operatorname{card}(P)$. So $u_{1}^{\prime} A_{1} u_{2}^{\prime} A_{2} \cdots u_{n}^{\prime} A_{n} \Rightarrow^{2 n-1} u_{1}^{\prime} y_{1} \overline{y_{1}} z_{1} u_{2}^{\prime} y_{2} \overline{y_{2}} z_{2} \cdots u_{n}^{\prime} y_{n} \overline{y_{n}} z_{n}$ in G^{\prime}, where $u_{i}=h\left(u_{i}^{\prime}\right), x_{i}=y_{i} h\left(\overline{y_{i}}\right) z_{i}=y_{i} z_{i}$.
2. and 2. imply that $S \Rightarrow{ }^{(2 n-1)(k-1)+1} u_{1}^{\prime} A_{1} u_{2}^{\prime} A_{2} \cdots u_{n}^{\prime} A_{n} \Rightarrow^{2 n-1} u_{1}^{\prime} y_{1} \overline{y_{1}} z_{1} u_{2}^{\prime} y_{2} \overline{y_{2}} z_{2} \cdots u_{n}^{\prime} y_{n} \overline{y_{n}} z_{n}$ thus $S \Rightarrow{ }^{(2 n-1)(k+1-1)+1} u_{1}^{\prime} y_{1} \overline{y_{1}} z_{1} u_{2}^{\prime} y_{2} \overline{y_{2}} z_{2} \cdots u_{n}^{\prime} y_{n} \overline{y_{n}} z_{n}$, where $h\left(u_{1}^{\prime} y_{1} \overline{y_{1}}\right) z_{1} h\left(u_{2}^{\prime} y_{2} \overline{y_{2}}\right) z_{2} \cdots h\left(u_{n}^{\prime}\right.$ $\left.y_{n} \overline{y_{n}}\right) z_{n}=u_{1} x_{1} \ldots u_{n} x_{n}$.
Claim 4.2: For every $n-R L S M G G^{\prime}$ defined above there exists pc as $f s a(n) A S, A S=\left(\Sigma, A_{1}\right.$, $\left.\ldots, A_{n}\right), A_{i}=\left(Q_{i}, \Sigma, R_{i}, S_{i}, F_{i}\right), 1 \leq i \leq n$, such that if $S \Rightarrow^{m} w_{1} w_{2} \cdots w_{n}$ in G^{\prime}, where $w_{i}=u_{i}^{\prime} q_{i}^{\prime}$, $u_{i}^{\prime} \in T^{\prime *} q_{i}^{\prime} \in N_{i}^{\prime} \cup\{\varepsilon\}, 1 \leq i \leq n$, then $S_{1} u_{1} S_{2} u_{2} \ldots S_{n} u_{n} \vdash^{m} q_{1} q_{2} \cdots q_{n}$ in $A S$, where $u_{i}=h\left(u_{i}^{\prime}\right) \in$ $\Sigma^{*}, q_{i} \in Q_{i}$, for all $1 \leq i \leq n$.

Proof. This Claim is proved by induction. For the sake of simplicity consider that G^{\prime} is n-strictly right linear simple matrix grammar. Let $G^{\prime}=\left(N_{1}^{\prime}, N_{2}^{\prime}, \ldots, N_{n}^{\prime}, T^{\prime}, S, P^{\prime}\right)$ (as defined above), then G^{\prime} consists of n slot grammars (see [3]), of the form $G_{i}=\left(N_{i}^{\prime} \cup\left\{S_{i}\right\}, T^{\prime}, S_{i}, P_{i}^{\prime}\right)$, where $S_{i}=S$, $S_{i} \notin N_{i}^{\prime}, P_{i}^{\prime}=\left\{S_{i} \rightarrow X_{i} \mid\left[S \rightarrow X_{1} \cdots X_{i} \cdots X_{n}\right] \in P^{\prime}\right\} \cup\left\{X_{i} \rightarrow x_{i} \mid\left[X_{1} \rightarrow x_{1}, \ldots X_{i} \rightarrow x_{i}, \ldots, X_{n} \rightarrow x_{n}\right] \in\right.$ $\left.P^{\prime}\right\}$. For each component of $A S A_{i}=\left(Q_{i}, \Sigma, R_{i}, S_{i}, F_{i}\right)$, let $Q_{i}=N_{i}^{\prime} \cup\left\{S_{i}\right\}, \Sigma=T, R_{i}=\{p a \rightarrow$ $\left.q \mid(p \rightarrow a q) \in P_{i}^{\prime}\right\} \cup\left\{p \xrightarrow{c} q \mid(p \rightarrow \bar{c} q) \in P_{i}^{\prime}\right\}, F_{i}=\left\{q \mid(q \rightarrow \varepsilon) \in P_{i}^{\prime}\right\}$. We just used an generally known algorithm for converting strictly right linear grammar to a non-deterministic finite state machine.

Basic: Let $m=0$. Then $S \Rightarrow^{0} S$ in G^{\prime}. Observe that $S_{1} S_{2} \cdots S_{n} \vdash^{0} S_{1} S_{2} \cdots S_{n}$ in $A S$.
Induction hypothesis: Assume that Claim 4.2 holds for all m-step derivations, where $m=$ $0, \ldots, k$, for some $k \geq 0$.

Induction step: Consider $S \Rightarrow{ }^{k+1} x_{1}^{\prime} u_{1}^{\prime} q_{1} \cdots x_{n}^{\prime} u_{n}^{\prime} q_{n}$ in G^{\prime}, then there exists sentential form $x_{1}^{\prime} p_{1} \cdots x_{n}^{\prime} p_{n}$ in G^{\prime}, where $p_{i} \in N_{i}^{\prime}$ such that $S \Rightarrow^{k} x_{1}^{\prime} p_{1} \cdots x_{n}^{\prime} p_{n} \Rightarrow x_{1}^{\prime} u_{1}^{\prime} q_{1} \cdots x_{n}^{\prime} u_{n}^{\prime} q_{n}$ in G^{\prime}.

1. $S \Rightarrow^{k} x_{1}^{\prime} p_{1} \cdots x_{n}^{\prime} p_{n}$ in G^{\prime} implies $S_{1} x_{1} S_{2} x_{2} \ldots S_{n} x_{n} \vdash^{k} p_{1} p_{2} \cdots p_{n}$ in $A S, x_{i}=h\left(x_{i}^{\prime}\right)$, for all $i=1, \ldots, n$ by the induction hypothesis.
2. Let $x_{1}^{\prime} p_{1} \cdots x_{n}^{\prime} p_{n} \Rightarrow x_{1}^{\prime} u_{1}^{\prime} q_{1} \cdots x_{n}^{\prime} u_{n}^{\prime} q_{n}$ in G^{\prime}. Then, there holds $\left(p_{i} \rightarrow u_{i}^{\prime} q_{i}\right) \in P_{i}^{\prime}$. Algorithm used by definition of $A S$ implies that $\left(p_{i} u_{i} \vdash q_{i}\right) \in R_{i}, u_{i} \in \Sigma$ if $u_{i}=h\left(u_{i}^{\prime}\right)$, or $\left(p_{i} \xrightarrow{c} q_{i}\right), u_{i}^{\prime}=\bar{c}$ if $\varepsilon=h\left(u_{i}^{\prime}\right)$ for all $i=0, \ldots, n$. So $p_{1} u_{1} \cdots p_{n} u_{n} \vdash q_{1} \cdots q_{n}$ in $A S$.
3. and 2. imply that $S_{1} x_{1} u_{1} S_{2} x_{2} u_{2} \ldots S_{n} x_{n} u_{n} \vdash^{k+1} q_{1} q_{2} \cdots q_{n}$, where $x_{i} u_{i}=h\left(x_{i}^{\prime} u_{i}^{\prime}\right), 1 \leq i \leq n$.

Consider Claim 4.1 with $m \geq 0, w_{i} \in T^{*}$, for all $1 \leq i \leq n$. At this point, if $S \Rightarrow^{m} w_{1} \cdots w_{n}$ in G, then $S \Rightarrow{ }^{(2 n-1)(m-1)+1} v_{1} \cdots v_{n}$ in G^{\prime}, where $h\left(v_{i}\right)=w_{i}$, for all $1 \leq i \leq n$. Hence $\mathcal{L}(G) \subseteq$ $h\left(\mathcal{L}\left(G^{\prime}\right)\right)$. Consider Claim 4.2 with $m \geq 0, w_{1} \in T^{\prime *}$, for all $1 \leq i \leq n$. At this point, if $S \Rightarrow^{m}$ $w_{1} \cdots w_{n}$ in G^{\prime}, then $S_{1} u_{1} \cdots S_{n} u_{n} \vdash^{m} q_{1} \cdots q_{n}$ in $A S$, where $u_{i}=h\left(w_{i}\right), q_{i} \in F_{i}$, for all $1 \leq i \leq n$. Hence $h\left(\mathcal{L}\left(G^{\prime}\right)\right) \subseteq \mathcal{L}(A S) . \mathcal{L}(G) \subseteq h\left(\mathcal{L}\left(G^{\prime}\right)\right)$ and $h\left(\mathcal{L}\left(G^{\prime}\right)\right) \subseteq \mathcal{L}(A S)$ imply $\mathcal{L}(G) \subseteq \mathcal{L}(A S)$.

Hence $R_{[n]} \subseteq P S A S F S A(n)$, where $R_{[n]}$ denotes the family (class) of $n-R L S M G$.

5 CONCLUSION

We introduced parallel finite systems communicating by transitions and we have showed in Theorem 4.1, which has been proven, that the class of languages accepted by n-parallel finite automata systems is a subset of class of languages generated by n-right linear simple matrix languages. And from [1] we already know, that these classes are equivalent and because classes of languages generated by $n-R L S M G$ forms a hierarchy, where $R_{[n]} \subset R_{[n+1]}$, then for the classes of languages accepted by pc as fsa(n) holds that PSASFSA(n) \subset PS AS FSA $(n+1)$.
Acknowledgement: This work was partially supported by the BUT FIT grant FIT-S-10-2 and the research plan MSM0021630528.

REFERENCES

[1] Petrík, P: Automata systems, Brno, 2007, Bachelor thesis, FIT BUT
[2] Krithivasan, K., Balan, S., Harsha, P.: Distributed Processing in Automata. International Journal of Foundations of Computer Science, 10(4):443-463, December 1999
[3] Wood, D.: m-parallel n-right linear simple matrix languages. Util. Math., 8:3-28, 1975
[4] Ibarra, O. H.: Simple Matrix Languages. Information and Control, 17(4):359-394, 1970
[5] Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. Handbook of formal languages, pages 155-213, 1997
[6] Martín-Vide, C., Mateescu, A., Mitrana, V.: Parallel Finite Automata Systems Communicating by States. Int. J. Found. Comput. Sci., 13(5):733-749, 2002
[7] Meduna, A.: Automata and Languages: Theory and Applications. Springer Verlag, 2005

