
ON n-PATH-CONTROLLED GRAMMARS

Jiří Koutný
Doctoral Degree Programme (2), FIT BUT

E-mail: ikoutny@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper discusses context-free grammars with some root-to-leaf paths in derivation trees
restricted by control languages. It demonstrates that if these control languages are linear, then
there are several families of generated languages depending on the common part of all restricted
paths. The paper deals with the investigation of several properties of these families.

1 INTRODUCTION

Indisputably, the investigation of context-free grammars with restricted derivation trees repre-
sents an important trend in today’s formal language theory (see [1], [3], [4], [5], [6], [8]). In
essence, these grammas generate their languages just like ordinary context-free grammars do;
in addition, however, their derivation trees have to satisfy some simple prescribed conditions.
The present paper continues with the investigation of these grammars.

The authors in [5] have studied a new type of restriction in derivation: a derivation tree in
a context-free grammar is accepted only if it contains a path described by a string generated
by another context-free grammar. They take two context-free grammars, G and G′, where G′

generates a language over the total alphabet of G. A string w generated by G is accepted only
if there is a derivation tree t of w with respect to G such that there exists a path in t which is
marked by a string from L(G′). Based on this restriction, they have introduced path-controlled
grammars, PC grammars for short, and they have found many properties of this formal model.
As they have noticed in the final remarks, however, still many modifications remains unsolved.

The regular paths in a derivation tree of context-free grammars do not increase the generative
power (see [4] and see [5], Prop. 2). In this paper, therefore, a control language is supposed to
be linear (see page 597 in [7]). Here, we deal with a generalization of path-controlled grammars
where the string w generated by G is accepted only if there is a derivation tree t of w with respect
to G such that there exists n ≥ 0 paths in t that are marked by the strings from linear language
L(G′). Based on path-controlled grammars introduced in [5] and pumping lemma for linear
languages (see page 120 in [5]), we establish several types of n-path-controlled grammars. We
show that if the restricted paths satisfy the certain property, then there exist an infinite hierarchy
of n-path-controlled grammars.

In conclusion, we formulate some open problems and suggest some new trends in the investi-
gation of n-path-controlled grammars.

2 DEFINITIONS

This paper assumes that the reader is familiar with the theory of formal languages (see [7]) and
the theory of regulated rewriting (see [2]). In this section, we introduce some terminology used
in the sequel.

For an alphabet V , V ∗ denotes the letter monoid (generated by V under the operation of con-
catenation), ε is the unit of V ∗, V + = V ∗−{ε}. For a word x ∈V ∗, |x| denotes its length.

A context-free grammar is a quadruple G = (V,T,P,S), where, as usual, V is a (finite) alphabet,
T ⊆ V is a terminal alphabet, P is a finite set of production rules of the form A→ x, where
A ∈ V − T , x ∈ V ∗, and S ∈ V − T is the starting symbol. Let N = V − T denote a set of
nonterminals. In the standard manner, we introduce the relations⇒G,⇒i

G,⇒+
G ,⇒∗G (see [7]).

Let G4(x) denote a set of the derivation trees with frontier x with respect to the grammar G.
Let t ∈G4(x) be a derivation tree. Let path(s) denote the word obtained by concatenating all
symbols of the path s (in order from the top, i.e. from the root of t to a leaf of t).

Borrowing the notation from [5], we generalize path-controlled grammar and introduce a n-
path-controlled grammar, nPC grammar for short. An nPC-grammar is a pair (G,G′), where
G = (V,T,P,S) is a context-free grammar and G′ = (V ′,V,P′,S′) is a linear grammar (see page
597 in [7]). The language generated by (G,G′) is L(G,G′) = {w ∈ L(G)| there is a set C of n
different paths in t ∈G4(w) such that for all p ∈C it holds path(p) ∈ L(G′) and all p ∈C are
divided in the common node of t}.

Clearly, each two paths of a derivation tree contain at least one common node. Thus, for a nPC
grammar (G,G′), there is some mC ∈ N that denotes a number of common nodes for all p ∈C.
Hence, for each two p1, p2 ∈C it holds that path(p1) = rDs1, path(p2) = rDs2, where r ∈ N∗,
D ∈ N, s1,s2 ∈ N∗T and |rD|= mC.

Consider the pumping lemma for linear languages (see page 120 in [5]). Hence, each path(p),
where p ∈ C, such that |path(p)| ≥ k, for some k ≥ 0, can be written in the form path(p) =
uvwxy and for each m≥ 0 it holds that uvmwxmy ∈ L(G′).

We distinguish five types of nPC grammars depending on the value of mC in relation to pumping
lemma for L(G′): The types are I

nPC if C satisfies 0≤ mC ≤ |u|, II
n PC if C satisfies |u|< mC ≤

|uv|, III
n PC if C satisfies |uv| < mC ≤ |uvw|, IV

n PC if C satisfies |uvw| < mC ≤ |uvwx|, and V
n PC

if C satisfies |uvwx|< mC ≤ |uvwxy|, where uvwxy is the shortest path from C.

We denote the family of the languages generated by LIN, CF , PC, nPC, I
nPC, II

n PC, III
n PC,

IV
n PC, V

n PC grammars by LIN, CF, PC, n-PC, I-n-PC, II-n-PC, III-n-PC, IV-n-PC, V-n-PC,
respectivelly.

3 RESULTS

Theorem 1. PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof. The equality clearly follows from the definitions of PC, nPC, i
nPC, for i = I, II, III, IV,V ,

grammars.

Theorem 2. If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such that each
z ∈ L with |z| > p can be written in the form z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 <
|v1v2 . . .v2n+2| ≤ q and u1vi

1u2vi
2 . . .u2n+2vi

2n+2u2n+3 ∈ L for all i≥ 1.

Proof. Let (G,G′) be a III
n PC-grammar, where G = (V,T,P,S) and G′ = (V ′,V,P′,S′). We deal

directly only with grammar G—in the case of G′, we deal only with the language L(G′).

Consider t ∈(G,G′)4(z). For each path(s) = SA1 . . .Aka of t, where s ∈ C, S,A1, . . . ,Ak ∈ N,
a ∈ T , consider the rules Ai→ xiAi+1yi used when passing from Ai to Ai+1 on this path and the
rule Ak→ xkayk used in the last step of the derivation in G corresponding to the path s.

Consider that any xiyi, i = 1, . . . ,k, contains a nonterminal B that do not belong on any path
s ∈C. Clearly, there is substring z′ of z derived from B. Since G is context-free, it follows that
if |z′| ≥ k1, for some k1 ≥ 0, then there are two substrings z′1,z

′
2 of z′ that can be pumped and by

pumping lemma for context-free languages, z′1,z
′
2 are bounded in length.

If L(G) is infinite, the string path(s) ∈ L(G′) is arbitrarily long. Thus, if path(s) = uvxyz
with |uvxyz| ≥ k2, for some k2 ≥ 0, then uvxyz satisfies uvixyiz ∈ L(G′), for i ≥ 1. Hence, the
derivations starting from the symbols of v and y can be repeated in G. Since (G,G′) is III

n PC
grammar, it follows that the derivations starting from the symbols of v in G are common for all
s ∈C and the derivations starting from the symbols of y in G are unique for each s ∈C.

Consider the derivations starting from v in G. This leads to pumping of two substrings v1, v2n+2
of z—one in the left-hand side, one in the right-hand side of common part of all s ∈C.

Consider the derivations starting from y in G. This leads to pumping of two substrings of z—
one in the left-hand side, one in the right-hand side of each s ∈ C. For each si+1 ∈ C, denote
this two substrings v2i+2, v2i+3, i = 0,1, . . . ,n− 1. Since (G,G′) is III

n PC grammar, we obtain
2n pumped substrings of z.

By pumping lemma for context-free languages, the substrings v1,v2, . . . ,v2n+2 are bounded in
length. So, the total length of the 2n+2 pumped substrings of z is bounded by a constant q.

Corollary 3. III-n-PC cannot count to 2n+3, but can count to 2n+2, e.g. L = {aibicidiei f igi| i≥
1} /∈ III-2-PC, but L ∈ III-3-PC.

Corollary 4. There is an infinite hierarchy of
Sn

i=0 III-i-PC languages; i.e.
Sn

i=0 III-i-PC ⊂Sn+1
i=0 III-i-PC, for n≥ 0, is proper.

Corollary 5. III-n-PC is not closed under concatenation, e.g. L = {aiaiaiaiaiai| i ≥ 1} ∈
III-2-PC, but LL /∈ III-2-PC.

Example 1. Let us have III
n PC grammar (G,G′), n≥ 0, where

G1 = ({S}∪{Ai,Bi| i = 1, . . . ,n}∪{ai| i = 1, . . . ,2n+2},{ai| i = 1, . . . ,2n+2},P,S),
P ={S→ a1Sa2n+2,S→ a1A1 . . .Ana2n+n}∪
{Ai+1→ a2i+2Ai+1a2i+3,Ai+1→ Bi+1,Bi+1→ a2i+2a2i+3| i = 0, . . . ,n−1},

L(G′) =
Sn

i=1{SkAk
i Bia2i| k ≥ 1}—clearly, L(G′) ∈ LIN.

Consider a derivation in (G,G′):

S⇒k ak
1Sak

2n+2
⇒ ak

1a1A1 . . .Ana2n+2ak
2n+2

⇒n×k ak+1ak
2B1ak

3 . . .ak
2nBnak

2n+1ak+1
2n+2

⇒n ak+1ak+1
2 ak+1

3 . . .ak+1
2n ak+1

2n+1ak+1
2n+2

Clearly, n different paths are described by L(G′). This way, by III
n PC grammar (G,G′), n ≥ 0,

we can generate the language L(G,G′) = {ak
1, . . . ,a

k
2n+2| k ≥ 1}.

To be more concrete, consider III
2 PC grammar (G,G′), where

G = ({S,X ,Y,U,V,a,b,c,d,e, f},{a,b,c,d,e, f},P,S),
P = {S→ aS f ,S→ aXY f ,X → bXc,X →U,U → bc,Y → dYe,Y →V,V → de},
L(G′) = {SnXnUb∪SnY nV d| n≥ 1},
L(G,G′) = {anbncndnen f n| n≥ 1}.

Example 2. Let m≥ 0 with m mod 2 = 0. Let us have III
n PC grammar (G,G′), n≥ 0, where

G = ({A j,B j,a j| j = 1, . . . ,m}∪{C},{a j| j = 1, . . . ,m},P,A1),
P ={A1→ a1A1,A1→ a1A2,B1→ B1a1,B1→C,C→ a1,Am→ Amam,Am→{Bm}n}∪
{Ai→ Aiai,Ai→ Ai+1| i = 2, . . . ,m−1 with i mod 2 = 0}∪
{Ai→ aiAi,Ai→ Ai+1| i = 3, . . . ,m−1 with i mod 2 = 1}∪
{Bi→ aiBi,Bi→ Bi−1| i = 2, . . . ,m with i mod 2 = 0}∪
{Bi→ Biai,Bi→ Bi−1| i = 3, . . . ,m with i mod 2 = 1},

L(G′) = {Ak1
1 Ak2

2 . . .Akm
m Bkm

m Bkm−1
m−1 . . .Bk2

2 Bk1
1 Ca1| ki ≥ 0, i = 1, . . . ,m}—clearly, L(G′) ∈ LIN.

Consider a derivation in (G,G′), for some m≥ 0 with m mod 2 = 0:

A1⇒k1 ak1
1 A1

⇒ ak1+1
1 A2

⇒k2 ak1+1
1 A2ak2

2
⇒ ak1+1

1 A3ak2
2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1Amakm
m . . .ak6

6 ak4
4 ak2

2
⇒ ak1+1

1 ak3
3 ak5

5 . . .akm−1
m−1{Bm}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n×km ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{akm
m Bm}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{akm
m Bm−1}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n×km−1 ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{akm
m Bm−1akm−1

m−1}nakm
m . . .ak6

6 ak4
4 ak2

2
⇒∗ ak1+1

1 ak3
3 ak5

5 . . .akm−1
m−1{akm

m akm−2
m−2 . . .ak2

2 B1ak1
1 . . .akm−3

m−3akm−1
m−1}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{akm
m akm−2

m−2 . . .ak2
2 Cak1

1 . . .akm−3
m−3akm−1

m−1}nakm
m . . .ak6

6 ak4
4 ak2

2
⇒n ak1+1

1 ak3
3 ak5

5 . . .akm−1
m−1{akm

m akm−2
m−2 . . .ak2

2 ak+1
1 . . .akm−3

m−3akm−1
m−1}nakm

m . . .ak6
6 ak4

4 ak2
2

Thus, n different paths are described by L(G′). This way, by III
n PC grammar (G,G′), n ≥ 0,

m≥ 0 with m mod 2 = 0, we can generate the language

L(G,G′) = {(ak1+1
1 ak3

3 . . .akm−1
m−1am

makm−2
m−2akm−4

m−4 . . .ak2
2)n+1| ki ≥ 0, i = 1, . . . ,m}.

To be more concrete, consider m = 4 and III
3 PC grammar (G,G′), where

G = ({A,B,C,D,E,F,G,H, I,a,b,c,d},{a,b,c,d},P,A),
P = {A→ aA,A→ aB,B→ Bb,B→C,C→ cC,C→ D,D→ Dd,D→ HHH,E→ Ea,

E→ I,F → bF,F → E,G→ Gc,G→ F,H→ dH,H→ G, I→ a},
L(G′) = {ArBsCtDuHuGtFsErIa| r,s, t,u≥ 0},
L(G,G′) = {arctdubsarctdubsarctdubsarctdubs| r > 0,s, t,u≥ 0}.

4 CONCLUSION

We have considered a new type of restriction in derivation: nPC grammars as a generalization
of PC grammars introduced in [5]. In relation to pumping lemma for linear languages, we have
demonstrated that there are several types of such nPC grammars. We have found several prop-
erties of such model, especially pumping property for III

n PC grammars and some consequences
that follow this property.

It seems that the most useful is the family of III-n-PC languages and for this family, there
are still many questions to by answered—for instance, generative power, closure properties,
decidability properties, parsing properties, and descriptional complexity. For I-n-PC and V-n-
PC, however, also many properties can be found. For II-n-PC and IV-n-PC, there are currently
no answers, only questions. As the requirements for a set C of all controlled paths looks fairly
restrictive, weaker control could be of interest, i.e. the request for C that all controlled paths
have to be divided in just one node can be weakened. The formal study of such variants remains
to be carried out; we hope to return to this topic in a forthcoming paper.

ACKNOWLEDGEMENT

This work was partially supported by the FRVŠ MŠMT grant FR2581/2010/G1, the BUT FIT
grant FIT-10-S-2, and the research plan MSM0021630528.

REFERENCES

[1] K. Čulik and H. A. Maurer. Tree controlled grammars. Computing, 19:129–139, 1977.

[2] J. Dassow and Gh. Păun. Regulated Rewriting in Formal Language Theory. Springer,
Berlin, 1989.

[3] J. Dassow and B. Truthe. Subregularly tree controlled grammars and languages. In Au-
tomata and Fromal Languages - 12th International Conference AFL 2008, Balatonfured,
pages 158–169. Computer and Automation Research Institute of the Hungarian Academy
of Sciences, 2008.

[4] J. Koutný. Regular paths in derivation trees of context-free grammars. In Proceedings of
the 15th Conference and Competition STUDENT EEICT 2009 Volume 4, pages 410–414.
Faculty of Information Technology BUT, 2009.

[5] S. Marcus, C. Martín-Vide, V. Mitrana, and Gh. Păun. A new-old class of linguistically
motivated regulated grammars. In CLIN, pages 111–125, 2000.

[6] C. Martín-Vide and V. Mitrana. Further properties of path-controlled grammars. In Formal
Grammar / Mathematics of Language 2005, pages 219–230. Edimburgh, 2005.

[7] A. Meduna. Automata and Languages: Theory and Applications. Springer Verlag, 2005.

[8] Gh. Păun. On the generative capacity of tree controlled grammars. Computing, 21(3):213–
220, 1979.

