ON RELATIONS ON PRODUCTIONS FOR COOPERATIVE DISTRIBUTED GRAMMAR SYSTEMS

Filip Goldefus
Postgraduate Programme (3), FIT BUT
E-mail: igoldefu@fit.vutbr.cz
Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract

The present paper introduces cooperative distributed grammar systems with ordered grammars as components. These grammars have a ordering on productions, which leads to a increase of the generative power compared to a cooperative distributed grammar systems with context-free grammars as components. The cooperating mode $=2$ is investigated and proved that cooperative distributed grammar systems with ordered grammars as components are as powerful as programmed grammars with appearance checking containing erasing productions.

1 INTRODUCTION

In the formal language theory, cooperative distributed grammar systems are based on contextfree productions, or more precisely context-free grammars. The present paper introduces ordered grammars as components of cooperative distributed grammar systems and investigates their generative power.

The ordered grammars ([3]), as their name indicates, has an ordering on productions, which limits the nondeterminism on derivations, such that not every production is applicable on a sentential form, compared to the context-free grammars with same productions and sentential form.

This paper proves that for every programmed grammar with appearance checking consisting erasing productions ([1]), there exists a cooperative distributed grammar system working in mode $=2$ generating the same language. The class of languages generated by programmed grammars with appearance checking is equal to the class of recursively enumerable languages from Chomsky hierarchy ([2]).

2 PRELIMINARIES AND DEFINITIONS

We assume that reader is familiar with the language theory (see [2]). A context-free grammar is a quadruple, $G=(N, T, S, P)$, where N is a finite set of nonterminal symbols, T is a finite set of terminal symbols, $S \in N$ is the starting nonterminal (axiom), and P is a finite set of productions of the form $p: A \rightarrow \alpha$, with $A \in N, \alpha \in(N \cup T)^{*}$ and p is unique label. For $p: A \rightarrow v$ and $x, y \in V^{*}$, we say that x directly derives y, written as $x=u A w \Rightarrow u v w=y[p]$ or, simply, $x \Rightarrow y$.

In the standard manner, extend \Rightarrow to \Rightarrow^{n}, where $n \geq 0$; then, based on \Rightarrow^{n}, define \Rightarrow^{+}and \Rightarrow^{*}. The language of $G, L(G)$, is defined as $L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}$.
A programmed grammar with appearance checking is a triple, $H=(G, R, F)$, where $G=$ (N, T, S, P) is a context-free grammar, and R, F are finite relations on P. If $p: A \rightarrow v \in P$, $R(p)=W$, and $F(p)=X$, we write $(p: A \rightarrow x, W, X)$, where W and X are success and failure fields, respectively. For $(x, p),(y, q) \in(N \cup T)^{*} \times P,(x, p) \Rightarrow(y, q)$ in H if either $x \Rightarrow y[p]$ in G and $q \in R(p)$, or $x=y, q \in F(p), p$ is not applicable to x. The language of $H, L(H)$, is defined as $L(H)=\left\{w \in T^{*} \mid(S, p) \Rightarrow^{*}(w, q), p, q \in P\right\}$. For every programmed grammar with appearance checking, $H=(G, R, F)$, where $G=(N, T, S, P)$, there exists a well-formed programmed grammar with appearance checking $M=\left(G^{\prime}, R^{\prime}, F^{\prime}\right)$, with $G=\left(N, T, S, P^{\prime}\right)$, such that $L(H)=L(M)$ and for every production $p \in P^{\prime}, R^{\prime}(p) \neq \emptyset$ and $F^{\prime}(p) \neq \emptyset$. The proof is left to reader.

An ordered grammar is a quadruple $G=(N, T, S, P)$ where N, T and S are specified as in a context-free grammar and P is a finite partially ordered set of context-free productions, the ordering relation is transitive, denoted by $<$. For $x, y \in(N \cup T)^{*}, x \Rightarrow y$, iff there is a production $p: A \rightarrow w$ such that $x=x^{\prime} A x^{\prime \prime}, y=x^{\prime} w x^{\prime \prime}$ and there is no production $q: B \rightarrow v \in P$ such that $q<p$ and B occurs in x, we say p is greater than q.
A ordered cooperating distributed (OCD) grammar system of degree n is an $(n+3)$-tuple $\Gamma=$ $\left(N, T, S, P_{1}, \ldots, P_{n}\right)$, where for all $i=1, \ldots, n$, each component $G_{i}=\left(N, T, P_{i}, S\right)$ is a ordered grammar, for $n \geq 1$.
Let $\Gamma=\left(N, T, S, P_{1}, \ldots, P_{n}\right)$ be a OCD grammar system of degree n, for $1 \leq i \leq n$, the k-steps ($=k$-mode) derivation of i-th component denoted $\Rightarrow_{i}^{=k}$, is defined by $x \Rightarrow_{i}^{=k} y$ for $x, y \in(N \cup T)^{*}$ iff there are $x_{1}, \ldots, x_{k} \in(N \cup T)^{*}$ such that $x=x_{1}, y=x_{k+1}$ and $x_{j} \Rightarrow x_{j+1}$ for each $1 \leq j \leq k$ in a ordered grammar $G_{i}=\left(N, T, P_{i}, S\right)$. The $\Rightarrow^{=k *}$ denotes the reflexive and transitive closure of the relation $\Rightarrow_{i}^{=k}$. The language of Γ in $=k$-mode is defined as $L_{=k}(\Gamma)=\left\{w \in T^{*} \mid S \Rightarrow_{i_{1}}^{=k}\right.$ $\left.w_{1} \Rightarrow{ }_{i_{2}}^{=k} \ldots \Rightarrow_{i_{n}}^{=k} w_{n}=w, n \geq 1, i_{j} \in\{1, \ldots, n\}, 1 \leq j \leq n\right\}$.
The families of languages generated by programmed grammars with appearance checking consisting erasing productions, ordered grammars, cooperating grammars of degree n in mode $=k$ and ordered cooperating grammars of degree n in mode $=\mathrm{k}$, respectively, are denoted by $P_{a c}^{\varepsilon}$, $O R, C D_{=k}(n), O C D_{=k}(n)$.

3 MAIN RESULTS

This section proves that cooperative distributed grammar systems with ordered grammars as components are as powerful as programmed grammars with appearance checking.

Theorem 1. $P_{a c}^{\varepsilon}=\bigcup_{n=1}^{\infty} O C D_{=1}(n)$.
Proof. Let $H=(G, R, F)$ be a well-formed programmed grammar with appearance checking and $G=(N, T, S, P)$, construct a OCD grammar system of degree $2|P|+1, \Gamma=\left(\mathcal{N}, T, S_{\Gamma}\right.$, $\left.P_{0}, \ldots, P_{2|P|}\right)$, such that $\mathcal{N}=\left\{S_{\Gamma}\right\} \cup N_{\langle \rangle} \cup \bar{N}_{\langle \rangle}$with $N_{\langle \rangle}=\{\langle X ; p\rangle \mid X \in N \cup T, p: A \rightarrow v \in P\}$ and $\bar{N}_{\langle \rangle}=\left\{\bar{X} \mid X \in N_{\langle \rangle}\right\} \cup\{\overline{\langle\varepsilon ; p\rangle} \mid p: A \rightarrow v \in P\}$. The sets of productions are defined as follows.
Let $p: X \rightarrow X_{1} X_{2} \ldots X_{n} \in P, X_{i} \in(N \cup T), 1 \leq i \leq n, q \in R(p)$, and $r \in F(p)$, create a set P_{k} such that k is unique, $1 \leq k \leq|P|$, and $P_{k}=P_{k}^{1} \cup P_{k}^{2} \cup P_{k}^{3}$, where

1. $P_{k}^{1}=\left\{X \rightarrow X \mid X \in \bar{N}_{\langle \rangle}\right\}$,
2. If $n \geq 1$, then $P_{k}^{2}=\left\{\langle X ; p\rangle \rightarrow \overline{\left\langle X_{1} ; q\right\rangle}\left\langle X_{2} ; p\right\rangle \ldots\left\langle X_{n} ; p\right\rangle\right\}$, else $P_{k}^{2}=\{\langle X ; p\rangle \rightarrow \overline{\langle\varepsilon ; q\rangle}\}$
3. $P_{k}^{3}=\{\langle Y ; p\rangle \rightarrow \overline{\langle Y ; r\rangle} \mid Y \in(N \cup T)\}$.

The following inequations hold, for all $p \in P_{k}^{1}, q \in P_{k}^{2}, r \in P_{k}^{3}, p<q, p<r$ and $q<r$.
Create a set $P_{k}=P_{k}^{1} \cup P_{k}^{2}$ corresponding to a production $p: X \rightarrow v \in P$, with unique $k,|P|+1 \leq$ $k \leq 2|P|$ such that

1. $P_{k}^{1}=\{\langle X ; q\rangle \rightarrow\langle X ; p\rangle \mid X \in(N \cup T), q: Y \rightarrow z \in P-\{p: X \rightarrow v\}\}$,
2. If $|v| \geq 1$, then $P_{k}^{2}=\{\overline{\langle X ; p\rangle} \rightarrow\langle X ; p\rangle \mid X \in N \cup T\}$, else $P_{k}^{2}=\{\overline{\langle\varepsilon ; p\rangle} \rightarrow \varepsilon\}$,
3. $P_{k}^{3}=\{X \rightarrow X \mid X \in \mathcal{N}\}$.

Following inequation holds, for all $p \in P_{k}^{1}$, and for all $q \in P_{k}^{2}, p<q$.
The set P_{0} is constructed as follows, $P_{0}=P_{0}^{1} \cup P_{0}^{2} \cup P_{0}^{3}$, with

1. $P_{0}^{1}=\left\{X \rightarrow X \mid X \in \bar{N}_{\langle \rangle}\right\}$,
2. $P_{0}^{2}=\{\langle a ; p\rangle \rightarrow a \mid a \in T, p: X \rightarrow v \in P\}$,
3. $P_{0}^{3}=\left\{S_{\Gamma} \rightarrow\langle S ; p\rangle \mid p: S \rightarrow v \in P\right\} \cup\{X \rightarrow X \mid X \in \mathcal{N}\}$.

The following inequation holds, for all $p \in P_{k}^{1}$, and for all $q \in P_{k}^{2}, p<q$.
The cooperative distributed grammar system Γ simulates derivation steps of the programmed grammar with appearance checking H. A typical sentential form of Γ is of the form

$$
\left\langle X_{1} ; p\right\rangle\left\langle X_{2} ; p\right\rangle \ldots\left\langle X_{n} ; p\right\rangle .
$$

This form corresponds to the configuration $\left(X_{1} X_{2} \ldots X_{n}, p\right)$ of H. Grammar Γ simulates one derivation step of grammar H by a sequence of derivation steps. If a sentential form of Γ contains a nonterminal $\overline{\left\langle X_{k} ; q\right\rangle} \in \bar{N}_{\langle \rangle}$then remaining nonterminals in sentential form are synchronized by productions from a set $P_{k},|P|+1 \leq k \leq 2|P|$, corresponding to the production labeled by q, to the form $\left\langle X_{i} ; q\right\rangle \in N_{\langle \rangle}$, where the second component of nonterminal has to be the label of production $q: X_{j} \rightarrow \beta \in P$.

Every set of production $P_{k}, 1 \leq k \leq 2|P|$, corresponds to a production from programmed grammar H. Some sets of productions contain productions of the form $X \rightarrow X$, ensuring that a sentential form keeps unchanged in case that it contains the nonterminal X.
To prove that $L(H) \subseteq L(\Gamma)$, consider a derivation $(S, r) \Rightarrow^{*}\left(A_{1} A_{2} \ldots A_{i} \ldots A_{n}, q\right) \Rightarrow(\beta, p)$ in H using a production $p: X \rightarrow B_{1} \ldots B_{m} \in P, r \in Q, R(p) \neq \emptyset$ and $F(p) \neq \emptyset$. For $i=1, \ldots, n$, $A_{i} \in(N \cup T)$.

Sentential form of Γ is of the form

$$
\alpha=\left\langle A_{1} ; q\right\rangle\left\langle A_{2} ; q\right\rangle \ldots\left\langle A_{j-1} ; q\right\rangle \overline{\left\langle A_{j} ; p\right\rangle}\left\langle A_{j+1} ; q\right\rangle \ldots\left\langle A_{n} ; q\right\rangle
$$

then there exist k, such that $|P|+1 \leq k \leq 2|P|$ corresponding to the production labeled with p. If $A_{j} \in(N \cup T)$,

$$
\alpha \Rightarrow=_{k}^{2}\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{j-1} ; p\right\rangle\left\langle A_{j} ; p\right\rangle\left\langle A_{j+1} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle,
$$

else $A_{j}=\varepsilon$ and

$$
\alpha \Rightarrow{ }_{k}^{=2}\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{j-1} ; p\right\rangle\left\langle A_{j+1} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle
$$

in Γ by multiple application of productions from the set of productions P_{k}.
Now, there exists P_{k}, with $1 \leq k \leq|P|$ corresponding to the production labeled with p, and a nonterminal $A_{i}=X$ in the sentential form, so for a production $s: X \rightarrow X_{1} \ldots X_{o} \in R(p)$. If $m \geq 1$, then

$$
\begin{array}{ll}
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{i} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle & \Rightarrow_{k}^{=2} \\
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle B_{1} ; s\right\rangle\left\langle B_{2} ; p\right\rangle \ldots\left\langle B_{m} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle,
\end{array}
$$

else

$$
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{i} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle \Rightarrow \bar{k}_{k}^{2}\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots \overline{\langle\varepsilon ; s\rangle} \ldots\left\langle A_{n} ; p\right\rangle
$$

in Γ. Finally, consider that a nonterminal $\langle X ; p\rangle$ is not present in the sentential form and $r \in$ $R(p)$, thus

$$
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{i} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle \Rightarrow{ }_{k}^{2}\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots \overline{\left\langle A_{i} ; r\right\rangle} \ldots\left\langle A_{n} ; p\right\rangle
$$

in Γ and the derivation proceeds by induction.
Let $\left\langle a_{1} ; p\right\rangle\left\langle a_{2} ; p\right\rangle \ldots\left\langle a_{n} ; p\right\rangle$ be a sentential form of Γ and $a_{i} \in T$ for all $1 \leq i \leq n$, then only productions form the set P_{0} are applicable and $\left\langle a_{1} ; p\right\rangle\left\langle a_{2} ; p\right\rangle \ldots\left\langle a_{n} ; p\right\rangle \Rightarrow_{0}^{=2 *} a_{1} \ldots a_{n}$. To prove that $L(\Gamma) \subseteq L(H)$, consider a shortest derivation of the form

$$
S_{\Gamma} \Rightarrow_{0}^{=2} \ldots \Rightarrow^{=2 *}\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle \Rightarrow_{k}^{=2 *}\left\langle B_{1} ; q\right\rangle\left\langle B_{2} ; q\right\rangle \ldots\left\langle B_{m} ; q\right\rangle
$$

in Γ. Without any loss of generality productions from the set P_{0} are applied on

$$
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle,
$$

for $A_{1} \ldots A_{n} \in T^{+}$. Consider $k, 1 \leq k \leq|P|$, if set P_{k} corresponds to a production $t: Y \rightarrow \alpha \in P$, if $t \neq p$, then there is no production applicable on the sentential form $\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle$. If $p=t, p: X \rightarrow D_{1} \ldots D_{s}, A_{i}=X$ for some $1 \leq i \leq n$ and $q \in R(p)$, then for $s \geq 1$

$$
\begin{array}{ll}
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{i} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle & \Rightarrow_{k}^{2} \\
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle D_{1} ; q\right\rangle\left\langle D_{2} ; p\right\rangle \ldots\left\langle D_{s} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle
\end{array}
$$

and for $s=0,\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{i} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle \Rightarrow_{k}^{=2}\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots \overline{\langle\varepsilon ; q\rangle} \ldots\left\langle A_{n} ; p\right\rangle$ in Γ.
Now, assume that $\langle X ; p\rangle$ is not present in the sentential form and $q \in F(p)$, then

$$
\begin{array}{ll}
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{i} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle & \Rightarrow_{k}^{=} \\
\left\langle A_{1} ; p\right\rangle\left\langle A_{2} ; p\right\rangle \ldots\left\langle A_{i-1} ; p\right\rangle\left\langle A_{i} ; q\right\rangle\left\langle A_{i+1} ; p\right\rangle \ldots\left\langle A_{n} ; p\right\rangle &
\end{array}
$$

in Γ for some $1 \leq i \leq n$.
Let sentential form is of the form $\left\langle B_{1} ; p\right\rangle\left\langle B_{2} ; p\right\rangle \ldots\left\langle B_{i-1} ; p\right\rangle \overline{\left\langle B_{i} ; q\right\rangle}\left\langle B_{i+1} ; p\right\rangle \ldots\left\langle B_{m} ; p\right\rangle$. All sets of productions except $P_{k},|P|+1 \leq k \leq 2|P|$, corresponding to a production $q: Z \rightarrow \beta \in P$, contains productions $X \rightarrow X$ for $X \in \bar{N}_{\langle \rangle}$. The set of productions P_{k} ensures, that nonterminals $\left\langle B_{j} ; p\right\rangle \in N_{\langle \rangle}$will be rewritten on $\left\langle B_{j} ; q\right\rangle, j=\{1, \ldots, m\}-\{i\}$, and consequently for $B_{i} \in(N \cup$ T),

$$
\begin{aligned}
& \left\langle B_{1} ; q\right\rangle\left\langle B_{2} ; q\right\rangle \ldots\left\langle B_{i-1} ; q\right\rangle \overline{\left\langle B_{i} ; q\right\rangle}\left\langle B_{i+1} ; q\right\rangle \ldots\left\langle B_{m} ; q\right\rangle \quad \Rightarrow_{k} \\
& \left\langle B_{1} ; q\right\rangle\left\langle B_{2} ; q\right\rangle \ldots\left\langle B_{i-1} ; q\right\rangle\left\langle B_{i} ; q\right\rangle\left\langle B_{i+1} ; q\right\rangle \ldots\left\langle B_{m} ; q\right\rangle,
\end{aligned}
$$

and for $B_{i}=\varepsilon$

$$
\begin{aligned}
& \left\langle B_{1} ; q\right\rangle\left\langle B_{2} ; q\right\rangle \ldots\left\langle B_{i-1} ; q\right\rangle \overline{\left\langle\varepsilon_{i} ; q\right\rangle}\left\langle B_{i+1} ; q\right\rangle \ldots\left\langle B_{m} ; q\right\rangle \quad \Rightarrow_{k}^{=2} \\
& \left\langle B_{1} ; q\right\rangle\left\langle B_{2} ; q\right\rangle \ldots\left\langle B_{i-1} ; q\right\rangle\left\langle B_{i+1} ; q\right\rangle \ldots\left\langle B_{m} ; q\right\rangle,
\end{aligned}
$$

in Γ. The proof now proceeds by induction.
As any derivation of Γ finishes by using productions from P_{0} when $b_{1} \ldots b_{m} \in T^{+}$, so

$$
\left\langle b_{1} ; q\right\rangle\left\langle b_{2} ; q\right\rangle \ldots\left\langle b_{m} ; q\right\rangle \Rightarrow{ }_{0}^{=}{ }^{2 *} b_{1} b_{2} \ldots b_{m}
$$

By Church's thesis, $P_{a c}^{\varepsilon}=R E$, so $P_{a c}^{\varepsilon}=\bigcup_{n=1}^{\infty} O C D_{=2}(n)$.

4 CONCLUSIONS

We denote by $C F$ the class of context-free languages, $F O R$ denotes the class of languages generated by forbidding grammars and $C S$ denotes the class of context sensitive languages. Recall that it is well-known (see [4]) that $C F=\bigcup_{n=1}^{\infty} C D_{=1}(n), F O R=O R \subset C S, P_{a c}^{\varepsilon}=R E$. Previous section proved that $R E=P_{a c}^{\varepsilon}=\bigcup_{n=1}^{\infty} O C D_{=2}(n)$.

REFERENCES

[1] Jurgen Dassow and Gheorge Paun. Regulated Rewriting in Formal Language Theory. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1990.
[2] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.
[3] Carlos Martín-Vide, Victor Mitrana, and Gheorghe Paun. Formal Languages and Applications. Springer-Verlag, London, UK, 2004.
[4] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, vol. 2: Linear Modeling: Background and Application. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

