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ABSTRACT

The present paper introduces cooperative distributed grammar systems with ordered grammars
as components. These grammars have a ordering on productions, which leads to a increase of
the generative power compared to a cooperative distributed grammar systems with context-free
grammars as components. The cooperating mode =2 is investigated and proved that cooper-
ative distributed grammar systems with ordered grammars as components are as powerful as
programmed grammars with appearance checking containing erasing productions.

1 INTRODUCTION

In the formal language theory, cooperative distributed grammar systems are based on context-
free productions, or more precisely context-free grammars. The present paper introduces or-
dered grammars as components of cooperative distributed grammar systems and investigates
their generative power.

The ordered grammars ([3]), as their name indicates, has an ordering on productions, which
limits the nondeterminism on derivations, such that not every production is applicable on a
sentential form, compared to the context-free grammars with same productions and sentential
form.

This paper proves that for every programmed grammar with appearance checking consisting
erasing productions ([1]), there exists a cooperative distributed grammar system working in
mode =2 generating the same language. The class of languages generated by programmed
grammars with appearance checking is equal to the class of recursively enumerable languages
from Chomsky hierarchy ([2]).

2 PRELIMINARIES AND DEFINITIONS

We assume that reader is familiar with the language theory (see [2]). A context-free grammar is
a quadruple, G = (N,T,S,P), where N is a finite set of nonterminal symbols, T is a finite set of
terminal symbols, S ∈ N is the starting nonterminal (axiom), and P is a finite set of productions
of the form p : A→ α, with A ∈ N,α ∈ (N ∪ T )∗ and p is unique label. For p : A→ v and
x,y ∈V ∗, we say that x directly derives y, written as x = uAw⇒ uvw = y [p] or, simply, x⇒ y.



In the standard manner, extend⇒ to⇒n, where n≥ 0; then, based on⇒n, define⇒+ and⇒∗.
The language of G, L(G), is defined as L(G) = {w ∈ T ∗|S⇒∗ w}.

A programmed grammar with appearance checking is a triple, H = (G,R,F), where G =
(N,T,S,P) is a context-free grammar, and R,F are finite relations on P. If p : A → v ∈ P,
R(p) = W , and F(p) = X , we write (p : A→ x,W,X), where W and X are success and fail-
ure fields, respectively. For (x, p),(y,q) ∈ (N ∪T )∗×P, (x, p)⇒ (y,q) in H if either x⇒ y [p]
in G and q ∈ R(p), or x = y, q ∈ F(p), p is not applicable to x. The language of H, L(H), is
defined as L(H) = {w ∈ T ∗|(S, p)⇒∗ (w,q), p,q ∈ P}. For every programmed grammar with
appearance checking, H = (G,R,F), where G = (N,T,S,P), there exists a well-formed pro-
grammed grammar with appearance checking M = (G′,R′,F ′), with G = (N,T,S,P′), such that
L(H) = L(M) and for every production p ∈ P’, R′(p) 6= /0 and F ′(p) 6= /0. The proof is left to
reader.

An ordered grammar is a quadruple G = (N,T,S,P) where N,T and S are specified as in a
context-free grammar and P is a finite partially ordered set of context-free productions, the
ordering relation is transitive, denoted by <. For x,y ∈ (N∪T )∗, x⇒ y, iff there is a production
p : A→ w such that x = x′Ax′′, y = x′wx′′ and there is no production q : B→ v ∈ P such that
q < p and B occurs in x, we say p is greater than q.

A ordered cooperating distributed (OCD) grammar system of degree n is an (n+3)-tuple Γ =
(N,T,S, P1, . . . ,Pn), where for all i = 1, . . . ,n, each component Gi = (N,T,Pi,S) is a ordered
grammar, for n≥ 1.

Let Γ = (N,T,S,P1, . . . ,Pn) be a OCD grammar system of degree n, for 1 ≤ i ≤ n, the k-steps
(=k-mode) derivation of i-th component denoted⇒=k

i , is defined by x⇒=k
i y for x,y∈ (N∪T )∗

iff there are x1, . . . ,xk ∈ (N ∪T )∗such that x = x1, y = xk+1 and x j ⇒ x j+1 for each 1 ≤ j ≤ k
in a ordered grammar Gi = (N,T,Pi,S). The⇒=k∗ denotes the reflexive and transitive closure
of the relation ⇒=k

i . The language of Γ in =k-mode is defined as L=k(Γ) = {w ∈ T ∗|S⇒=k
i1

w1⇒=k
i2 . . .⇒=k

in wn = w,n≥ 1,i j ∈ {1, . . . ,n},1≤ j ≤ n}.

The families of languages generated by programmed grammars with appearance checking con-
sisting erasing productions, ordered grammars, cooperating grammars of degree n in mode =k
and ordered cooperating grammars of degree n in mode =k, respectively, are denoted by Pε

ac,
OR, CD=k(n), OCD=k(n).

3 MAIN RESULTS

This section proves that cooperative distributed grammar systems with ordered grammars as
components are as powerful as programmed grammars with appearance checking.

Theorem 1. Pε
ac =

⋃
∞
n=1 OCD=1(n).

Proof. Let H = (G,R,F) be a well-formed programmed grammar with appearance checking
and G = (N,T,S,P), construct a OCD grammar system of degree 2|P|+ 1, Γ = (N ,T,SΓ,
P0, . . . , P2|P|), such that N ={SΓ}∪N〈〉∪N〈〉 with N〈〉 = {〈X ; p〉|X ∈ N∪T, p : A→ v ∈ P} and
N〈〉 = {X |X ∈ N〈〉}∪{〈ε; p〉|p : A→ v ∈ P}. The sets of productions are defined as follows.

Let p : X→ X1X2 . . .Xn ∈ P, Xi ∈ (N∪T ),1≤ i≤ n,q ∈ R(p), and r ∈ F(p), create a set Pk such
that k is unique, 1≤ k ≤ |P|, and Pk = P1

k ∪P2
k ∪P3

k , where



1. P1
k = {X → X |X ∈ N〈〉},

2. If n≥ 1, then P2
k = {〈X ; p〉 → 〈X1;q〉〈X2; p〉 . . .〈Xn; p〉}, else P2

k = {〈X ; p〉 → 〈ε;q〉}

3. P3
k = {〈Y ; p〉 → 〈Y ;r〉|Y ∈ (N∪T )}.

The following inequations hold, for all p ∈ P1
k , q ∈ P2

k , r ∈ P3
k , p < q, p < r and q < r.

Create a set Pk = P1
k ∪P2

k corresponding to a production p : X → v ∈ P, with unique k, |P|+1≤
k ≤ 2|P| such that

1. P1
k = {〈X ;q〉 → 〈X ; p〉|X ∈ (N∪T ),q : Y → z ∈ P−{p : X → v}},

2. If |v| ≥ 1, then P2
k = {〈X ; p〉 → 〈X ; p〉|X ∈ N∪T}, else P2

k = {〈ε; p〉 → ε},

3. P3
k = {X → X |X ∈N }.

Following inequation holds, for all p ∈ P1
k , and for all q ∈ P2

k , p < q.

The set P0 is constructed as follows, P0 = P1
0 ∪P2

0 ∪P3
0 , with

1. P1
0 = {X → X |X ∈ N〈〉},

2. P2
0 = {〈a; p〉 → a|a ∈ T, p : X → v ∈ P},

3. P3
0 = {SΓ→ 〈S; p〉|p : S→ v ∈ P}∪{X → X |X ∈N }.

The following inequation holds, for all p ∈ P1
k , and for all q ∈ P2

k , p < q.

The cooperative distributed grammar system Γ simulates derivation steps of the programmed
grammar with appearance checking H. A typical sentential form of Γ is of the form

〈X1; p〉〈X2; p〉 . . .〈Xn; p〉.

This form corresponds to the configuration (X1X2 . . .Xn, p) of H. Grammar Γ simulates one
derivation step of grammar H by a sequence of derivation steps. If a sentential form of Γ

contains a nonterminal 〈Xk;q〉 ∈ N〈〉 then remaining nonterminals in sentential form are syn-
chronized by productions from a set Pk, |P|+ 1 ≤ k ≤ 2|P|, corresponding to the production
labeled by q, to the form 〈Xi;q〉 ∈ N〈〉, where the second component of nonterminal has to be
the label of production q : X j→ β ∈ P.

Every set of production Pk, 1≤ k ≤ 2|P|, corresponds to a production from programmed gram-
mar H. Some sets of productions contain productions of the form X → X , ensuring that a
sentential form keeps unchanged in case that it contains the nonterminal X .

To prove that L(H) ⊆ L(Γ), consider a derivation (S,r)⇒∗ (A1A2 . . .Ai . . .An,q)⇒ (β, p) in
H using a production p : X → B1 . . .Bm ∈ P,r ∈ Q,R(p) 6= /0 and F(p) 6= /0. For i = 1, . . . ,n ,
Ai ∈ (N∪T ).

Sentential form of Γ is of the form

α = 〈A1;q〉〈A2;q〉 . . .〈A j−1;q〉〈A j; p〉〈A j+1;q〉 . . .〈An;q〉



then there exist k, such that |P|+1≤ k ≤ 2|P| corresponding to the production labeled with p.
If A j ∈ (N∪T ),

α⇒=2
k 〈A1; p〉〈A2; p〉 . . .〈A j−1; p〉〈A j; p〉〈A j+1; p〉 . . .〈An; p〉,

else A j = ε and

α⇒=2
k 〈A1; p〉〈A2; p〉 . . .〈A j−1; p〉〈A j+1; p〉 . . .〈An; p〉

in Γ by multiple application of productions from the set of productions Pk.

Now, there exists Pk, with 1 ≤ k ≤ |P| corresponding to the production labeled with p, and a
nonterminal Ai =X in the sentential form, so for a production s : X→ X1 . . .Xo ∈R(p). If m≥ 1,
then

〈A1; p〉〈A2; p〉 . . .〈Ai; p〉 . . .〈An; p〉 ⇒=2
k

〈A1; p〉〈A2; p〉 . . .〈B1;s〉〈B2; p〉 . . .〈Bm; p〉 . . .〈An; p〉,
else

〈A1; p〉〈A2; p〉 . . .〈Ai; p〉 . . .〈An; p〉 ⇒=2
k 〈A1; p〉〈A2; p〉 . . .〈ε;s〉 . . .〈An; p〉

in Γ. Finally, consider that a nonterminal 〈X ; p〉 is not present in the sentential form and r ∈
R(p), thus

〈A1; p〉〈A2; p〉 . . .〈Ai; p〉 . . .〈An; p〉 ⇒=2
k 〈A1; p〉〈A2; p〉 . . .〈Ai;r〉 . . .〈An; p〉

in Γ and the derivation proceeds by induction.

Let 〈a1; p〉〈a2; p〉 . . .〈an; p〉 be a sentential form of Γ and ai ∈ T for all 1 ≤ i ≤ n, then only
productions form the set P0 are applicable and 〈a1; p〉〈a2; p〉 . . .〈an; p〉 ⇒=2∗

0 a1 . . .an. To prove
that L(Γ)⊆ L(H), consider a shortest derivation of the form

SΓ⇒=2
0 . . .⇒=2∗ 〈A1; p〉〈A2; p〉 . . .〈An; p〉 ⇒=2∗

k 〈B1;q〉〈B2;q〉 . . .〈Bm;q〉

in Γ. Without any loss of generality productions from the set P0 are applied on

〈A1; p〉〈A2; p〉 . . .〈An; p〉,

for A1 . . .An ∈ T+. Consider k, 1≤ k ≤ |P|, if set Pk corresponds to a production t : Y → α ∈ P,
if t 6= p, then there is no production applicable on the sentential form 〈A1; p〉〈A2; p〉 . . .〈An; p〉.
If p = t, p : X → D1 . . .Ds, Ai = X for some 1≤ i≤ n and q ∈ R(p), then for s≥ 1

〈A1; p〉〈A2; p〉 . . .〈Ai; p〉 . . .〈An; p〉 ⇒=2
k

〈A1; p〉〈A2; p〉 . . .〈D1;q〉〈D2; p〉 . . .〈Ds; p〉 . . .〈An; p〉

and for s = 0,〈A1; p〉〈A2; p〉 . . .〈Ai; p〉 . . .〈An; p〉 ⇒=2
k 〈A1; p〉〈A2; p〉 . . .〈ε;q〉 . . .〈An; p〉 in Γ.

Now, assume that 〈X ; p〉 is not present in the sentential form and q ∈ F(p), then



〈A1; p〉〈A2; p〉 . . .〈Ai; p〉 . . .〈An; p〉 ⇒=
k

〈A1; p〉〈A2; p〉 . . .〈Ai−1; p〉〈Ai;q〉〈Ai+1; p〉 . . .〈An; p〉
in Γ for some 1≤ i≤ n.

Let sentential form is of the form 〈B1; p〉〈B2; p〉 . . .〈Bi−1; p〉〈Bi;q〉〈Bi+1; p〉 . . .〈Bm; p〉. All sets
of productions except Pk, |P|+ 1 ≤ k ≤ 2|P| , corresponding to a production q : Z → β ∈ P,
contains productions X → X for X ∈ N〈〉. The set of productions Pk ensures, that nonterminals
〈B j; p〉 ∈ N〈〉 will be rewritten on 〈B j;q〉, j = {1, . . . ,m}−{i}, and consequently for Bi ∈ (N ∪
T ),

〈B1;q〉〈B2;q〉 . . .〈Bi−1;q〉〈Bi;q〉〈Bi+1;q〉 . . .〈Bm;q〉 ⇒=2
k

〈B1;q〉〈B2;q〉 . . .〈Bi−1;q〉〈Bi;q〉〈Bi+1;q〉 . . .〈Bm;q〉,
and for Bi = ε

〈B1;q〉〈B2;q〉 . . .〈Bi−1;q〉〈εi;q〉〈Bi+1;q〉 . . .〈Bm;q〉 ⇒=2
k

〈B1;q〉〈B2;q〉 . . .〈Bi−1;q〉〈Bi+1;q〉 . . .〈Bm;q〉,
in Γ. The proof now proceeds by induction.

As any derivation of Γ finishes by using productions from P0 when b1 . . .bm ∈ T+ , so

〈b1;q〉〈b2;q〉 . . .〈bm;q〉 ⇒=2∗
0 b1b2 . . .bm.

By Church’s thesis, Pε
ac = RE, so Pε

ac =
⋃

∞
n=1 OCD=2(n).

4 CONCLUSIONS

We denote by CF the class of context-free languages, FOR denotes the class of languages
generated by forbidding grammars and CS denotes the class of context sensitive languages.
Recall that it is well-known (see [4]) that CF =

⋃
∞
n=1CD=1(n), FOR = OR ⊂ CS, Pε

ac = RE.
Previous section proved that RE = Pε

ac =
⋃

∞
n=1 OCD=2(n).
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