MULTILANGUAGES AND MULTIACCEPTING
AUTOMATA SYSTEM

Martin Cermak
Doctoral Degree Programme (2), FIT BUT

E-mail: xcermal6 @stud.fit.vutbr.cz

Supervised by: Alexander Meduna

E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper introduces a new area of modern theoretical computer science and deals about mul-
tilanguages processing by parallel automata system based on push-down automata.

1 INTRODUCTION

Theoretical computer science contains many formal models which describe different families
of languages. This paper introduces a new model of automata system processes multilanguages
instead of languages. This automata system may be useful in biomedicine or parallel compilers.

2 PRELIMINARIES

In this paper, we assume that the reader is familiar with formal language theory (see [3]).

For any integer n, I(n) = {1,2,...,n}. For a set, Q, |Q| denotes the cardinality of Q. For an
alphabet, V, V* represents the free monoid generated by V. The identity of V* is denoted by €.
Set V*t = V* — {e}; algebraically, V" is thus the free semigroup generated by V. For w € V*,
|w| denotes the length of w.

A pushdown automaton is a septuple M = (Q, X, Q. 8, o, Zo, F ), where Q is a finite set of states,
Y is an alphabet, go € Q is the initial state, Q is a pushdown alphabet, J is a finite set of rules
of the form Zga — yp, where p,q € Q, Z € Q, a € XU{e}, Y€ Q*, F C Q is a set of final
states, and Zy € Q is the initial pushdown symbol. A configuration of M is any word from
Q*Q¥*. For any configuration xAgay, where x € Q*, y € L*, g € Q, and any Aga — yp € &, M
makes a move from configuration xAgay to configuration xypy according to Aga — Yp, written
as xAqay = xypy|Aqa — Yp], or, simply, xAgay = xypy. If x,y € Q*QX* and m > 0, then
x ="y if there exists a sequence xg = x| = --- = X,;, Where xop = x and x,,, = y. Then, we say
x =7 y if there exists m > 0 such that x =™y, and x =* yif x=yorx =" y. If w € * and
Zoqow =" f, where f € F, then w is accepted by M, and Zgpgow =" f is an acceptance of w in
M. The language of M is defined as L(M) = {w € L* : Zogow =" f is an acceptance of w}.
Family of languages defined by pushdown automata is denoted by CF.

A context-free grammar is quadruple G = (N, T,S, P), where N and T are disjoint alphabets of
nonterminal and terminal symbols, respectively, S € T is the start symbol of G and P is finite set



of rules of the form A — o, where A€ Nand o € (NUT)*. Letu,v € (NUT)*, forall A — a,
write uAv = uow. Let =" denote transitive and reflexive closure of =. The language of G is
defined as L(G) = {®: S=" 0,0 € T*}.

A n—Multigenerative nonterminal-synchronized grammar system (denoted by n—-KGN) is (n+1)—
tuple I' = (G1,Ga,...,G,,Q), where G; = (N, T;,P;,S;) is a context-free grammar for each
i=1,...,n and Q is finite set of n—tuples of the form (Ay,...,A,), where A; € N; for all
i=1,...,n. A sentential n—form of n—~KGN is an n—tuple of the form x = (x1,...,x,), where x; €
(NUT)*foralli=1,...,n. Let n—forms = (u1A vy, ..., uzApvy) and X' = (u1x1v1, . . ., UnXnvy)
be two sentential forms, where A; € N;, u; € T* and v;,x; € (NUT)* for all i = 1,...,n.
Let A; — x; for all i =1,...,n and (Ay,...,A,) € Q. Then ¥ = %' and =* and =1 are
it’s transitive-reflexive and transitive closure, respectively. The n-language of I' is defined
as n-L(I') = {(w1,...,wn) (S1,...,8) = (W1,...,wn),w; € T.* Vi=1,2,...,n}. The lan-
guage generated by I' in the union mode is defined as Lyion(I') = {w : (wi,...,wy,) € n-
L(T),w € {wy,...,w,}}, the language generated by I" in the concatenation mode is defined
as Leone(I) ={w : (w1,...,wy) € n-L(T'),w = wy,...,w, }, the language generated by I in the
first mode is defined as Lyip(I') = {w1 : (w1,...,w,) € n-L(I')}. For more information see
[1] and [2]. Family of languages generated by n—Multigenerative nonterminal-synchronized
grammar system is denoted by RE.

DEFINITIONS
3.1 N-ACCEPTING STATE-SYNCHRONIZING AUTOMATA SYSTEM

Let I =1I(n) for some n > 1. Let Vi € I, M; = (Q;,X,17,0;,5i,zi 0, Fi) is push—down automaton.
Then n—Accepting, State—Synchronizing Automata System is defined as & = (My,...,M,,,¥,S)
where W is finite set of switch rules of the form (q1,...,q,) — (h1,..., k), Wwhere Vi € I, g; € Q;,
ki € {e,d}, e denote enable component of the automata system, d denote disable component of

the automata system, S is n-tuple (ﬁ?, ..., £%) and denotes starting activities of components in
n-MAS.

3.2 N-CONFIGURATION OF N-MAS

Let I = I(n) for some n > 1 and O = (My,...,M,,¥,S) and Vi € I, M; = (Q;,X,I';,8;,5i,2i0,
F;) is n-MAS. Then n—configuration is defined as n-tuple y = (x’f1 ,..,xin), where Vi € It x; =
(qizioy) € QiI'TE*, h; € {d,e}, where index d; and e; denotes configuration of disabled and

enabled component M; in n-MAS, respectively, ®; € ¥* denotes unreaded input string.

3.3 COMPUTING STEP IN N-MAS

Let I = I(n) for some n > 1 and © = (My,...,M,,P,S) is n-MAS, Vi € I, M; = (Q;,L,T';,d;,
si.220,F). et = (@nziar®) .. (qrintinton) ), 1 = (&40 ... (@Y, ).
are two n-configurations, where Vi € I, ¢;,q; € Q;; V.,zi,z; € Ifs v e TU{e}; i, 4] € {e,d},
o;, 0, € X*, a; € XU {e}, for i such that #; = e, Y,gia; — Yiq} € §;, O moves from n—configuration
X to ', denoted x - x', where Vj € I, where #; = d, ¢; = q; and o = a;0;, Vj € I, where
hi=e q;€Qjaw;=w; If (¢),....q,) = (g1,-..,50) € ¥, where g € {e,d} forall k € I,

nx
A

then A = g, Y (g1, ..., gn) € {e,d} x ... x {e;d} : (¢}, .,d.) = (g1, gn) & P, then for all




kel:h =f.

In the standard way, H* and " denote transitive-reflexive and transitive closure of I, respec-
tively.

3.4 N-MAS N-LANGUAGES

Let/ =1I(n) forsomen>1and & = (My,...,M,,¥,S) is n-MAS, where Vi € I, M; = (Q;, 2,17,
o;, si,zi70,17,-) is push-down automaton. o = ((51111601)ﬁl, (qnzn(x)n)ﬁ") is the start and ¥ ; =
((¢,7))",. .., (¢, z,€)") is a finish n—configuration of n-MAS. n-language of ni-MAS is defined
as n-L(9) = {(®1,...,04)[xo " X3¢ € Fj for all j € I}. Futhermore, every a € n—-L(9) is a
multistring.

3.5 ALGORITHM OF N-KGN TO N-MAS CONVERTION

Let i-KGN T = (Gy,..., Gn,é), where Vi € I(n), G; = (ﬁi,f},ﬁ,@) is context—free grammar
and n-MAS © = (M,,...,M,,¥,S), where Vi € I(n), M; = (Qi, £, I';, 8;, s{), z}), F;) is push-

down automaton accepting by final state and empty stack and n—L(%) = n-L(T"), where S =
(I1,...,1) : Vi€ I(n), l; = e. Then,

o Vie I(I’l), Gi and Mi - (Qi?zari36i7si7zi,07 E)

- setQ;={(A): A€ NYU{ri, it T=UL T, T, =ZUN;U{A": A€ N;JU{A A"},
Fi={fiksh = (5.2 = 4.

— §; contains rules of the form: 1) A’(S’;) — AS\,S’:/<§,>, 2) a(A) — ari: a € 7, and
A €N, 3)A(B) = A'ri: ALBEN;, 4) aria—ri: acT,5 A'r, — (A): A€N,
6) A(A) — fir A€ N, T) Ari — f;, 8) V(A — ) € P, A(A) — B()(A) € &;: 0 is
projection from (N;UT;)* to ({A’: A € N;N;} UT;)*, such that 8(®) = o, where '
is made from @ by replacing every A € N; in @f by A’A.

o W:V(Al,...,A)) €0, ((A1),....(A)) = (e,....€) € (fi,...,f) — (e,...,e) € P
YV(qiy---yqn) € Q1 X Q2 X ... X Oy, where {r1,...,r,} N {q1,-..,qu} # 0, (q1,---,qn) —
(Ii,...,1,) e ¥ and Yo € I(n) : g, € {r,} < I, = e. For other (q1,...,81) € 01 X Q2 X
e X Oy (q15--qn) = (d,....d) €

3.6 THEOREM

Family of n-languages of n—KGN and family of n-languages of n—-MAS are equivalent.

Proof of the Theorem 3.6

First, we prove that algorithm 3.5 is correct by following claims.

Claim A

Let (S1,...,8) = AV, uyAyv,) in T, where A4; € N, vi € (NUT)", wio; € T; Vi € I(n)
and (ulAlvl,/.\. . ,unAnvn) =* (u1m1 EERE un())n). Then ((A/<Sl>u1(01)e, R (A/<Sn>un(0n)e) H*
(AB(v)A (A o), ..., (AB(vy)A,{A,)®,) ) in O.

Proof of the Claim A By induction on length of derivation.

Basis: R R

Let (S1,...,5,) =° (51,...,8,), where (51,...,8,) =* (w,...,0,) and Vi € I(n) o; € T .



Then, (A/(S1)01)%,.... (A'(Sp)0n)¢) = (ASiS1 (1)), - (8,5, (Sm@n))[by 1 of &
F (ASIS) r@1), ..., (AS,S, ra,)?)[by 3 of 8] F ((AS1(S)@1)%, ..., ((ASy(S,)®@,)¢)[by 5
f 8.

;)nduction Hypothesis:

Suppose that Claim A holds for j and fewer derivations steps.
Induction Step:
Consider any derivation of the form (§1, ,§) =/l (ulxlvl,..., UnXnvy), where Vi € I(n),
uixivi = Wi Bivi, uj,u. € 7., B; € N, Vi, Vi, X (N UT) for wjw; € T, (urdyBpv'ivi, ...,
upt,Byvivy) =* (U101, ..., uy®,). This derlvatlon can be expressed as (§1, ... ,§n) =/ (u1Ayvy,
o UpApvn) = (U1X1V1, ..., UpXyvy), Where Vi € I(n) A; € N.. By induction hypothesis ((A’(ﬁ)
ui @)%, (A (S ua,)) F* ((AB(v1) A{AD @), ... ((AB(vi)An(An)®,)™). From defi-
nition of n—KGN, (A1,...,A,) € O and from algorithm it is obvious that ((A;),...,(A,)) —
(e,...,e) € ¥ and for every A; — x; € P; there is Ai(A;) — G(x,-). Therefore #1, ...,k = e and
((AB(vi)A1(AL)®1), .., (AB(v)An{An)@n)%) I ((AB(v1)(x % (Ao’ . ((A8(v1)(x)
(An)@,)¢) = ((AB()) (uy B B1)R(A1)@1)®, ..., (A8 (V,)(u,B,B,)R(A,)®,)¢). There is a; €
I — (]\A/, U{A,A’}) on the top of the stack in each automaton. Hence, from rules of the form
2 and 3 in §; and from ¥, ((A6(v})(u}B] B1)R{A1)o)¢, ...,((Ae(v;l)(u;B;Bn)R(An)wn)e) +
(AB(VY) () B B1)Rri@n)e, ..., ((AB(V,) (u), B,By)Rr,m,)¢). Because uuBiv: =* u;o;, u,wl =
uiu!. For every component M; of 9, there is a sequence of moves AG( )B Bl (ul)Rrl]
AB(V:)B;Blro; (by 4 of §;) and AB(v})B;Biri»: = AB(v})B;(B;)u,w (by 5 of §;). From W, it is
obvious, that each automaton M; which is in state (B;) is blocked until any other automaton
M is in the state r;. Hence, ((AO(v}) (| B} B1)Rriu, o)), ..., ((AO(V,)(u),B,By)Rruu,®),)¢) H*
(AB(V})B1 (B1)o))4, ..., ((AB(V),)By(B,)®,)"). The Claim A holds. O

Claim B

If (Sl,,fn) =" (0,...,0) in T, where Vi € I(n), o; € T} , there is a sequence of movies
(A{(S1)®1)%, ..., (A (Sp)®,)¢) H* ((f1)%,-.,(fn)¢) in O.

Proof of the Claim B

Consider any successful derivation (§ .,8,) =* (©1,...,0,). There must be multiform
(u1Ayvy,. .., uyAyvy) such that (Sl, Sn) =" (U1A V], -y UpAyVy) = (IXV], -y UnXgVy) =
(o1,..., ,l) By the claim (A), (A’(S1>0)l-)e,...,(A’(S’;}mn)e) H* (AB(vi)A (A @) ..., (A8
(vn)An(An) @) and Vi € I(n), o; = u;o0]. Because (Ay,...,A,) € 0, ({(A1),...,(A)) = (e,...,
e) € ¥, Vie I(n) hi = e and O moves to multiconfiguration (A8 (xjvy)(A1)®)), ..., (AB(x,v,)
(An)),)°. It is obvious that Vi € I(n), ®; = x;v;, because 0; = u;x;v; = u;®.. Therefore, there
are two possibilities of the top symbol on the stack in each automaton of . Either, top symbol
is A, than x;v; = € and ®; = €, that is M; moves to f;. Furthermore, if any other automaton M
is in the state r;, automaton M; is blocked. Or the top symbol is a; € 7., than Axvi)R(A)) xv; -
A(x;v;)Rrix;v; (by rule of the form 2 of ;) and A(x;v;)Rrix;v; =* Ar; (by rules type 4 of §;), Ar; -
fi (by 7) and automaton M, is blocked until any other automaton M of ¥ is in the state r;. Then
¥ is in the mutliconfiguration ((f1)¢,...,(fx)¢) and the Claim (B) holds. 0

Claim C

IfA(A’(ﬁlml)e,...,(A’(@)mn)e) H ((f1)%,--.,(fx)¢) in O, there is a sequence of derivations

(Sl,...,Sn) =* ((1)1,...,(!)").

Proof of the Claim C

Consider any successful acceptance (1) of the form (A(S))®)e, ..., (A (S)®,)¢) H* ((f1)°,
. (fn)¢) in 9. From algorithm (by rules 1 of §;) it is obvious, that first step of O must be



(A (S ), ..., (A (S)@n)¢) - ((AS1S) (SD) o)1, ..., ((AS,S, (S,)®,)") and from construc-
tion of W there are two possibilities of activities of automata in 9: ((S}),...,(S,)) = (d,....d) €
W, but Vi € I(n), l; = d and ® is not successful for any input. Therefore, ({S}),...,(S,)) —
(e,...,e) € ¥and Vi € I(n), l; = e. From rules of the form 3 and 5 in ; is clear that O must do
fallowing two steps: ((AS1S1 (S1)@1)S, ..., ((AS,S, (Sy)@n)¢) - ((AS1S) rie1)e, ..., ((AS,S,
ra®,)6) F ((AS1(S1)@1)e, ..., (AS,(S,)®,)¢) Consider any multiconfiguration ((AA, (A1)o))e,
. (A4, (Ap)@),)°), where ((AA1(A1)®))°, ..., ((AAR{An)@))°) E* ((f1)%, ..., (fn)€). O must
do these steps: ((AA1{(A1)®))¢, ..., ((AAx(An)®),)¢) F ((A71{A1)®))S, ..., (AV.(An)®),)¢) F
(Y1), ..., ((Yagn®])™), and (from 2, 3 and 6 of §; and from ¥) for each i € I(n) holds:
If vy =¢then Y. =, =¢, g = fi and § = 6, where ¢ € {e,d}, else ¥, = AY;, g; = r; and
l; = e. Furthermore, if y1,...,Y, =€ (i.e. Vj€I(n): g; = f;) then 6 = e. Otherwise 6 = d.
Now, there are only three applicable types of moves under each automaton M; which is in
the state r;: arija — ri: a € ﬁ and M; still active in the next computation step, or Bﬁr,- —
(Bj): B; € ]Vi, than next top symbol on the stack must be B; and M; is blocked until any au-
tomaton M; of ¥ is in the state rj, or Ar; — f; and M; is blocked until any automaton M
of ¥ is in the state r;. These three types of steps are repeatedly applied on active com-
ponents of ¥ until any automaton M is in the state r;. Hence and from construction of
Y, fallowing configuration of ¥ must be either ((f)¢,...,(f,)¢) (multistring is accepted), or
((AY,B1(B1)®})°, ..., ((AY,Bn(B,)®])¢) where Vi € I(n): B; € N; and ((By),...,(B,)) —
(e,...,e) € ¥. For any other n-tuple of states, ¥ blocked all automata (by ¥) and multi-
string is not accepted. It is obvious that we can express (I) as (A'(S))®1)%, ..., (A'(S,)®,)¢) F
(AS (S0, ., (AS(Swn)) ™ (VA iAo, . (ak) Al (al)yofye)
o (arPaP Aol L (anPa Al el)e) e (A1) (f)9) forall i €

I(k-+1), m; > 1. This computation of & we can simulate by I"as (S},..., S,,) = (uil)A(ll)vgl), -

uaAM MY = = @YY = (@, 0,) where Vi € I(n), Vi € I(k+1): u) €
YA",-*, Al(]) € ]Vi, VEJ) € (T} Uﬁi)* and ugj)wl(]) = ®;. Hence, the Claim (C) holds. O

It is well known family of 2-KGN languges, generated by operations union, concatenation and
the first under multilanguages (see [1, 2]), are equivalent with family of RE languages. Hence,

~

from claims (A), (B) and (C), it is clear that n-L(®) = n-L(I") and the Theorem 3.6 holds. O
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