
MULTILANGUAGES AND MULTIACCEPTING
AUTOMATA SYSTEM

Martin Čermák
Doctoral Degree Programme (2), FIT BUT

E-mail: xcerma16@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper introduces a new area of modern theoretical computer science and deals about mul-
tilanguages processing by parallel automata system based on push-down automata.

1 INTRODUCTION

Theoretical computer science contains many formal models which describe different families
of languages. This paper introduces a new model of automata system processes multilanguages
instead of languages. This automata system may be useful in biomedicine or parallel compilers.

2 PRELIMINARIES

In this paper, we assume that the reader is familiar with formal language theory (see [3]).

For any integer n, I(n) = {1,2, . . . ,n}. For a set, Q, |Q| denotes the cardinality of Q. For an
alphabet, V , V ∗ represents the free monoid generated by V . The identity of V ∗ is denoted by ε.
Set V+ = V ∗−{ε}; algebraically, V+ is thus the free semigroup generated by V . For w ∈ V ∗,
|w| denotes the length of w.

A pushdown automaton is a septuple M = (Q,Σ,Ω,δ,q0,Z0,F), where Q is a finite set of states,
Σ is an alphabet, q0 ∈ Q is the initial state, Ω is a pushdown alphabet, δ is a finite set of rules
of the form Zqa→ γp, where p,q ∈ Q, Z ∈ Ω, a ∈ Σ∪{ε}, γ ∈ Ω∗, F ⊆ Q is a set of final
states, and Z0 ∈ Ω is the initial pushdown symbol. A configuration of M is any word from
Ω∗QΣ∗. For any configuration xAqay, where x ∈ Ω∗, y ∈ Σ∗, q ∈ Q, and any Aqa→ γp ∈ δ, M
makes a move from configuration xAqay to configuration xγpy according to Aqa→ γp, written
as xAqay⇒ xγpy [Aqa→ γp], or, simply, xAqay⇒ xγpy. If x,y ∈ Ω∗QΣ∗ and m > 0, then
x⇒m y if there exists a sequence x0⇒ x1⇒ ··· ⇒ xm, where x0 = x and xm = y. Then, we say
x⇒+ y if there exists m > 0 such that x⇒m y, and x⇒∗ y if x = y or x⇒+ y. If w ∈ Σ∗ and
Z0q0w⇒∗ f , where f ∈ F , then w is accepted by M, and Z0q0w⇒∗ f is an acceptance of w in
M. The language of M is defined as L(M) = {w ∈ Σ∗ : Z0q0w⇒∗ f is an acceptance of w}.
Family of languages defined by pushdown automata is denoted by CF.

A context-free grammar is quadruple G = (N,T,S,P), where N and T are disjoint alphabets of
nonterminal and terminal symbols, respectively, S ∈ T is the start symbol of G and P is finite set

of rules of the form A→ α, where A ∈ N and α ∈ (N ∪T)∗. Let u,v ∈ (N ∪T)∗, for all A→ α,
write uAv⇒ uαv. Let⇒∗ denote transitive and reflexive closure of⇒. The language of G is
defined as L(G) = {ω : S⇒∗ ω,ω ∈ T ∗}.

A n–Multigenerative nonterminal–synchronized grammar system (denoted by n–KGN) is (n+1)–
tuple Γ = (G1,G2, . . . ,Gn,Q), where Gi = (Ni,Ti,Pi,Si) is a context-free grammar for each
i = 1, . . . ,n and Q is finite set of n–tuples of the form (A1, . . . ,An), where Ai ∈ Ni for all
i= 1, . . . ,n. A sentential n–form of n–KGN is an n–tuple of the form χ=(x1, . . . ,xn), where xi ∈
(N∪T)∗ for all i= 1, . . . ,n. Let n–forms χ=(u1A1v1, . . . ,unAnvn) and χ′=(u1x1v1, . . . ,unxnvn)
be two sentential forms, where Ai ∈ Ni, ui ∈ T ∗ and vi,xi ∈ (N ∪ T)∗ for all i = 1, . . . ,n.
Let Ai → xi for all i = 1, . . . ,n and (A1, . . . ,An) ∈ Q. Then χ ⇒ χ′ and ⇒∗ and ⇒+ are
it’s transitive-reflexive and transitive closure, respectively. The n-language of Γ is defined
as n-L(Γ) = {(w1, . . . ,wn) : (S1, . . . ,Sn)⇒∗ (w1, . . . ,wn),wi ∈ T ∗i ∀i = 1,2, . . . ,n}. The lan-
guage generated by Γ in the union mode is defined as Lunion(Γ) = {w : (w1, . . . ,wn) ∈ n-
L(Γ),w ∈ {w1, . . . ,wn}}, the language generated by Γ in the concatenation mode is defined
as Lconc(Γ) = {w : (w1, . . . ,wn) ∈ n-L(Γ),w = w1, . . . ,wn}, the language generated by Γ in the
first mode is defined as L f irst(Γ) = {w1 : (w1, . . . ,wn) ∈ n-L(Γ)}. For more information see
[1] and [2]. Family of languages generated by n–Multigenerative nonterminal–synchronized
grammar system is denoted by RE.

3 DEFINITIONS

3.1 N–ACCEPTING STATE–SYNCHRONIZING AUTOMATA SYSTEM

Let I = I(n) for some n≥ 1. Let ∀i ∈ I, Mi = (Qi,Σ,Γi,δi,si,zi,0,Fi) is push–down automaton.
Then n–Accepting, State–Synchronizing Automata System is defined as ϑ = (M1, . . . ,Mn,Ψ,S)
where Ψ is finite set of switch rules of the form (q1, . . . ,qn)→ (h1, . . . ,hn), where ∀i∈ I, qi ∈Qi,
hi ∈ {e,d}, e denote enable component of the automata system, d denote disable component of
the automata system, S is n-tuple (h0

1 , . . . ,h
0
n) and denotes starting activities of components in

n-MAS.

3.2 N–CONFIGURATION OF N–MAS

Let I = I(n) for some n ≥ 1 and ϑ = (M1, . . . ,Mn,Ψ,S) and ∀i ∈ I, Mi = (Qi,Σ,Γi,δi,si,zi,0,
Fi) is n-MAS. Then n–configuration is defined as n-tuple χ = (xh1

1 , . . . ,xhn
n), where ∀i ∈ I: xi =

(qiziωi) ∈ QiΓ
∗
i Σ∗, hi ∈ {d,e}, where index di and ei denotes configuration of disabled and

enabled component Mi in n-MAS, respectively, ωi ∈ Σ∗ denotes unreaded input string.

3.3 COMPUTING STEP IN N–MAS

Let I = I(n) for some n ≥ 1 and ϑ = (M1, . . . ,Mn,Ψ,S) is n–MAS, ∀i ∈ I, Mi = (Qi,Σ,Γi,δi,
si,zi,0,Fi). Let χ=((q1γ1z1a1ω1)

h1, . . . ,(qnγnznanωn)
hn), χ′=((q′1γ′1z′1ω′1)

h ′1 , . . ., (q′nγ′nz′nω′n)
h ′n),

are two n-configurations, where ∀i ∈ I, qi,q′i ∈ Qi; γ′i,zi,z′i ∈ Γ∗i ; γi ∈ Γ∪{ε}; hi,h ′i ∈ {e,d},
ωi,ω

′
i ∈ Σ∗, ai ∈ Σ∪{ε}, for i such that hi = e, γiqiai→ γ′iq

′
i ∈ δi, ϑ moves from n–configuration

χ to χ′, denoted χ ` χ′, where ∀ j ∈ I, where h j = d, q′j = q j and ω′j = a jω j, ∀ j ∈ I, where
h j = e, q′j ∈ Q j a ω′j = ω j. If (q′1, . . . ,q

′
n)→ (g1, . . . ,gn) ∈ Ψ, where gk ∈ {e,d} for all k ∈ I,

then h ′k = gk, If ∀(g1, . . . ,gn) ∈
n×︷ ︸︸ ︷

{e,d}× . . .×{e,d} : (q′1, . . . ,q
′
n)→ (g1, . . . ,gn) 6∈Ψ, then for all

k ∈ I : h ′k = hk.

In the standard way, `∗ and `+ denote transitive-reflexive and transitive closure of `, respec-
tively.

3.4 N–MAS N-LANGUAGES

Let I = I(n) for some n≥ 1 and ϑ = (M1, . . . ,Mn,Ψ,S) is n-MAS, where ∀i∈ I, Mi = (Qi,Σ,Γi,
δi, si,zi,0,Fi) is push-down automaton. χ0 = ((q1z1ω1)

h1 , . . ., (qnznωn)
hn) is the start and χ f =

((q′1z′1ε)h ′1, . . . ,(q′nz′nε)h ′n) is a finish n–configuration of n-MAS. n–language of n-MAS is defined
as n–L(ϑ) = {(ω1, . . . ,ωn)|χ0 `∗ χ f ;q′j ∈ Fj for all j ∈ I}. Futhermore, every a ∈ n–L(ϑ) is a
multistring.

3.5 ALGORITHM OF N–KGN TO N–MAS CONVERTION

Let n–KGN Γ̂ = (G1, . . ., Gn, Q̂), where ∀i ∈ I(n), Gi = (N̂i, T̂i, P̂i, Ŝi) is context–free grammar
and n–MAS ϑ = (M1, . . . ,Mn,Ψ,S), where ∀i ∈ I(n), Mi = (Qi, Σ, Γi, δi, si

0, zi
0, Fi) is push-

down automaton accepting by final state and empty stack and n–L(ϑ) = n-L(Γ̂), where S =
(l1, . . . , ln) : ∀i ∈ I(n), li = e. Then,

• ∀i ∈ I(n), Gi and Mi = (Qi,Σ,Γi,δi,si,zi,0, Fi):

– set Qi = {〈A〉 : A ∈ N̂i}∪{ri, fi}, Σ =
⋃n

i=1 T̂i, Γi = Σ∪ N̂i∪{A′ : A ∈ N̂i}∪{∆,∆′},
Fi = { fi}, si

0 = 〈Ŝi〉, zi
0 = ∆′,

– δi contains rules of the form: 1) ∆′〈Ŝi〉 → ∆ŜiŜi
′〈Ŝi〉, 2) a〈A〉 → ari: a ∈ T̂i and

A ∈ N̂i, 3) A′〈B〉 → A′ri: A,B ∈ N̂i, 4) aria→ ri: a ∈ T̂i, 5) A′ri → 〈A〉: A ∈ N̂i,
6) ∆〈A〉 → fi: A ∈ N̂i, 7) ∆ri → fi, 8) ∀(A→ α) ∈ P̂i, A〈A〉 → θ(α)〈A〉 ∈ δi: θ is
projection from (N̂i∪ T̂i)

∗ to ({A′ : A ∈ N̂iN̂i}∪ T̂i)
∗, such that θ(ω) = ω′, where ω′

is made from ωR by replacing every A ∈ N̂i in ωR by A′A.

• Ψ : ∀(A1, . . . ,An) ∈ Q̂, (〈A1〉, . . . ,〈An〉) → (e, . . . ,e) ∈ Ψ (f1, . . . , fn) → (e, . . . ,e) ∈ Ψ

∀(q1, . . . ,qn) ∈ Q1×Q2× . . .×Qn, where {r1, . . . ,rn}∩{q1, . . . ,qn} 6= /0, (q1, . . . ,qn)→
(l1, . . . , ln) ∈ Ψ and ∀o ∈ I(n) : qo ∈ {ro} ⇔ lo = e. For other (q1, . . . ,gn) ∈ Q1×Q2×
. . .×Qn, (q1, . . . ,qn)→ (d, . . . ,d) ∈Ψ

3.6 THEOREM

Family of n-languages of n–KGN and family of n-languages of n–MAS are equivalent.

Proof of the Theorem 3.6
First, we prove that algorithm 3.5 is correct by following claims.
Claim A
Let (Ŝ1, . . . , Ŝn)⇒∗ (u1A1v1, . . . ,unAnvn) in Γ, where Ai ∈ N̂i, vi ∈ (N̂i∪ T̂i)

∗, uiωi ∈ T̂i
∗ ∀i∈ I(n)

and (u1A1v1, . . . ,unAnvn) ⇒∗ (u1ω1, . . . ,unωn). Then ((∆′〈Ŝ1〉u1ω1)
e, . . . ,(∆′〈Ŝn〉unωn)

e) `∗
((∆θ(v1)A1〈Â1〉ω1)

h1 , . . ., (∆θ(vn)An〈Ân〉ωn)
hn) in ϑ.

Proof of the Claim A By induction on length of derivation.
Basis:
Let (Ŝ1, . . . , Ŝn) ⇒0 (Ŝ1, . . . , Ŝn), where (Ŝ1, . . . , Ŝn) ⇒∗ (ω1, . . . ,ωn) and ∀i ∈ I(n) ωi ∈ T̂i

∗
.

Then, ((∆′〈Ŝ1〉ω1)
e, . . . ,(∆′〈Ŝn〉ωn)

e) ` ((∆Ŝ1Ŝ1
′〈Ŝ1〉ω1)

e, . . . ,((∆ŜnŜn
′〈Ŝn〉ωn)

e)[by 1 of δi]

` ((∆Ŝ1Ŝ1
′
r1ω1)

e, . . . ,((∆ŜnŜn
′
rnωn)

e)[by 3 of δi] ` ((∆Ŝ1〈Ŝ1〉ω1)
e, . . . ,((∆Ŝn〈Ŝn〉ωn)

e)[by 5
of δi].
Induction Hypothesis:
Suppose that Claim A holds for j and fewer derivations steps.
Induction Step:
Consider any derivation of the form (Ŝ1, . . . , Ŝn)⇒ j+1 (u1x1v1, . . . , unxnvn), where ∀i ∈ I(n),
uixivi = uiu′iBiv′i, ui,u′i ∈ T̂i

∗
, Bi ∈ N̂i, vi,v′i,xi ∈ (N̂i ∪ T̂i)

∗, for uiωi ∈ T̂i
∗
(u1u′1Biv′1v1, . . . ,

unu′nBnv′nvn)⇒∗ (u1ω1, . . . , unωn). This derivation can be expressed as (Ŝ1, . . . , Ŝn)⇒ j (u1A1v1,
. . ., unAnvn)⇒ (u1x1v1, . . . , unxnvn), where ∀i ∈ I(n) Ai ∈ N̂i. By induction hypothesis ((∆′〈Ŝ1〉
u1ω1)

e, . . . ,(∆′〈Ŝn〉unωn)
e) `∗ ((∆θ(v1) A1〈A1〉ω1)

h1, . . . ,((∆θ(vn)An〈An〉ωn)
hn). From defi-

nition of n–KGN, (A1, . . . ,An) ∈ Q̂ and from algorithm it is obvious that (〈A1〉, . . . ,〈An〉)→
(e, . . . ,e) ∈ Ψ and for every Ai→ xi ∈ P̂i there is Ai〈Ai〉 → θ(xi). Therefore h1, . . . ,hn = e and
((∆θ(v1)A1〈A1〉ω1)

e, . . . ,((∆θ(vn)An〈An〉ωn)
e) ` ((∆θ(v1)(x1)

R〈A1〉ω1)
e, . . ., ((∆θ(v1)(xn)

〈An〉ωn)
e) = ((∆θ(v′1)(u

′
1B′1B1)

R〈A1〉ω1)
e, . . . ,((∆θ (v′n)(u

′
nB′nBn)

R〈An〉ωn)
e). There is ai ∈

Γi− (N̂i ∪{∆,∆′}) on the top of the stack in each automaton. Hence, from rules of the form
2 and 3 in δi and from Ψ, ((∆θ(v′1)(u

′
1B′1 B1)

R〈A1〉ω1)
e, . . . ,((∆θ(v′n)(u

′
nB′nBn)

R〈An〉ωn)
e) `

((∆θ(v′1)(u
′
1B′1B1)

Rr1ω1)
e, . . . ,((∆θ(v′n)(u

′
n B′nBn)

Rrnωn)
e). Because uiu′iBiv′i⇒∗ uiωi, uiωi =

uiu′iω
′
i. For every component Mi of ϑ, there is a sequence of moves ∆θ(v′i)BiB′i(u

′
i)

Rriu′iω
′
i `∗

∆θ(v′i)BiB′iriω
′
i (by 4 of δi) and ∆θ(v′i)BiB′iriω

′
i ` ∆θ(v′i)Bi〈Bi〉u′iω′i (by 5 of δi). From Ψ, it is

obvious, that each automaton Mi which is in state 〈Bi〉 is blocked until any other automaton
M j is in the state r j. Hence, ((∆θ(v′1)(u

′
1B′1B1)

Rr1u′1ω′1)
e, . . . ,((∆θ(v′n)(u

′
nB′nBn)

Rrnu′nω′n)
e) `∗

((∆θ(v′1)B1〈B1〉ω′1)l1, . . ., ((∆θ(v′n)Bn〈Bn〉ω′n)ln). The Claim A holds. ut

Claim B
If (Ŝ1, . . . , Ŝn)⇒∗ (ω1, . . . ,ωn) in Γ̂, where ∀i ∈ I(n), ωi ∈ T̂i

∗
, there is a sequence of movies

(∆′〈Ŝ1〉ω1)
e, . . . ,(∆′〈Ŝn〉ωn)

e) `∗ ((f1)
e, . . . ,(fn)

e) in ϑ.
Proof of the Claim B
Consider any successful derivation (Ŝ1, . . . , Ŝn) ⇒∗ (ω1, . . . ,ωn). There must be multiform
(u1A1v1, . . . ,unAnvn) such that (Ŝ1, . . . , Ŝn)⇒∗ (u1A1v1, . . ., unAnvn)⇒ (u1x1v1, . . ., unxnvn) =

(ω1, . . . ,ωn). By the claim (A), (∆′〈Ŝ1〉ωi)
e, . . . ,(∆′〈Ŝn〉ωn)

e) `∗ (∆θ(v1)A1〈A1〉ω′1)h1, . . . , (∆θ

(vn)An〈An〉ω′n)hn and ∀i ∈ I(n), ωi = uiω
′
i. Because (A1, . . . ,An) ∈ Q̂, (〈A1〉, . . . ,〈An〉)→ (e, . . .,

e) ∈ Ψ, ∀i ∈ I(n) hi = e and ϑ moves to multiconfiguration (∆θ(x1v1)〈A1〉ω′1)e, . . . ,(∆θ(xnvn)
〈An〉ω′n)e. It is obvious that ∀i ∈ I(n), ω′i = xivi, because ωi = uixivi = uiω

′
i. Therefore, there

are two possibilities of the top symbol on the stack in each automaton of ϑ. Either, top symbol
is ∆, than xivi = ε and ωi = ε, that is Mi moves to fi. Furthermore, if any other automaton M j

is in the state r j, automaton Mi is blocked. Or the top symbol is ai ∈ T̂i, than ∆(xivi)
R〈Ai〉xivi `

∆(xivi)
Rrixivi (by rule of the form 2 of δi) and ∆(xivi)

Rrixivi `∗ ∆ri (by rules type 4 of δi), ∆ri `
fi (by 7) and automaton Mi is blocked until any other automaton M j of ϑ is in the state r j. Then
ϑ is in the mutliconfiguration ((f1)

e, . . . ,(fn)
e) and the Claim (B) holds. ut

Claim C
If (∆′〈Ŝ1〉ω1)

e, . . . ,(∆′〈Ŝn〉ωn)
e) `∗ ((f1)

e, . . . ,(fn)
e) in ϑ, there is a sequence of derivations

(Ŝ1, . . . , Ŝn)⇒∗ (ω1, . . . ,ωn).
Proof of the Claim C
Consider any successful acceptance (I) of the form (∆′〈Ŝ1〉ω1)

e, . . . ,(∆′〈Ŝn〉ωn)
e) `∗ ((f1)

e,
. . ., (fn)

e) in ϑ. From algorithm (by rules 1 of δi) it is obvious, that first step of ϑ must be

(∆′〈Ŝ1〉ω1)
e, . . . ,(∆′〈Ŝn〉ωn)

e) ` ((∆Ŝ1Ŝ1
′〈Ŝ1〉ω1)

l1, . . . ,((∆ŜnŜn
′〈Ŝn〉ωn)

ln) and from construc-
tion of Ψ there are two possibilities of activities of automata in ϑ: (〈Ŝ1〉, . . . ,〈Ŝn〉)→ (d, . . . ,d)∈
Ψ, but ∀i ∈ I(n), li = d and ϑ is not successful for any input. Therefore, (〈Ŝ1〉, . . . ,〈Ŝn〉)→
(e, . . . ,e) ∈Ψ and ∀i ∈ I(n), li = e. From rules of the form 3 and 5 in δi is clear that ϑ must do
fallowing two steps: ((∆Ŝ1Ŝ1

′〈Ŝ1〉ω1)
e, . . . ,((∆ŜnŜn

′〈Ŝn〉ωn)
e) ` ((∆Ŝ1Ŝ1

′
r1ω1)

e, . . . ,((∆ŜnŜn
′

rnωn)
e) ` ((∆Ŝ1〈Ŝ1〉ω1)

e, . . . ,((∆Ŝn〈Ŝn〉ωn)
e) Consider any multiconfiguration ((∆A1〈A1〉ω′1)e,

. . ., ((∆An〈An〉ω′n)e), where ((∆A1〈A1〉ω′1)e, . . . ,((∆An〈An〉ω′n)e) `∗ ((f1)
e, . . . ,(fn)

e). ϑ must
do these steps: ((∆A1〈A1〉ω′1)e, . . . ,((∆An〈An〉ω′n)e) ` ((∆γ1〈A1〉ω′1)e, . . . ,((∆γn〈An〉ω′n)e) `
((γ′1q1ω′1)

l1, . . . ,((γ′nqnω′n)
ln), and (from 2, 3 and 6 of δi and from Ψ) for each i ∈ I(n) holds:

If γi = ε then γ′i = ω′i = ε, qi = fi and li = σ, where σ ∈ {e,d}, else γ′i = ∆γi, qi = ri and
li = e. Furthermore, if γ1, . . . ,γn = ε (i.e. ∀ j ∈ I(n) : q j = f j) then σ = e. Otherwise σ = d.
Now, there are only three applicable types of moves under each automaton Mi which is in
the state ri: aria → ri: a ∈ T̂i and Mi still active in the next computation step, or B′iri →
〈Bi〉: Bi ∈ N̂i, than next top symbol on the stack must be Bi and Mi is blocked until any au-
tomaton M j of ϑ is in the state r j, or ∆ri → fi and Mi is blocked until any automaton M j
of ϑ is in the state r j. These three types of steps are repeatedly applied on active com-
ponents of ϑ until any automaton M j is in the state r j. Hence and from construction of
Ψ, fallowing configuration of ϑ must be either ((f1)

e, . . . ,(fn)
e) (multistring is accepted), or

((∆γ′1B1〈B1〉ω′′1)e, . . ., ((∆γ′nBn〈Bn〉ω′′n)e) where ∀i ∈ I(n): Bi ∈ N̂i and (〈B1〉, . . . ,〈Bn〉) →
(e, . . . ,e) ∈ Ψ. For any other n-tuple of states, ϑ blocked all automata (by Ψ) and multi-
string is not accepted. It is obvious that we can express (I) as (∆′〈Ŝ1〉ω1)

e, . . . ,(∆′〈Ŝn〉ωn)
e) `3

((∆Ŝ1〈Ŝ1〉ω1)
e, . . . ,((∆Ŝn〈Ŝn〉ωn)

e) `m1 ((∆γ
(1)
1 A(1)

1 〈A
(1)
1 〉ω

(1)
1)e, . . . ,((∆γ

(1)
n A(1)

n 〈A(1)
n 〉ω(1)

n)e)

. . . `mk ((∆γ
(k)
1 A(k)

1 〈A
(k)
1 〉ω

(k)
1)e, . . . ,((∆γ

(k)
n A(k)

n 〈A(k)
n 〉ω(k)

n)e) `mk+1 ((f1)
e, . . . ,(fn)

e) for all i ∈
I(k+1), mi≥ 1. This computation of ϑ we can simulate by Γ̂ as (Ŝ1, . . ., Ŝn)⇒ (u(1)1 A(1)

1 v(1)1 , . . .,
u(1)n A(1)

n v(1)n)⇒ . . .⇒ (u(k+1)
1 , . . . ,u(k+1)

n) = (ω1, . . . ,ωn) where ∀i ∈ I(n), ∀ j ∈ I(k+1): u(j)
i ∈

T̂i
∗
, A(j)

i ∈ N̂i, v(j)
i ∈ (T̂i∪ N̂i)

∗ and u(j)
i ω

(j)
i = ωi. Hence, the Claim (C) holds. ut

It is well known family of 2-KGN languges, generated by operations union, concatenation and
the first under multilanguages (see [1, 2]), are equivalent with family of RE languages. Hence,
from claims (A), (B) and (C), it is clear that n-L(ϑ) = n-L(Γ̂) and the Theorem 3.6 holds. ut

ACKNOWLEDGEMENTS

This work was partially supported by the BUT FIT grant FIT-S-10-2, the FRVŠ grant MŠMT
2010: FR2581/2010/G1 and the research plan MSM0021630528.

REFERENCES

[1] Meduna, A., Lukáš, R.: Multigenerative Grammar Systems, In: Schedae Informaticae, roč.
2006, č. 15, Krakov, PL, s. 175-188, ISSN 0860-0295

[2] Lukáš, R.: Power of Multigenerative Grammar Systems, In: Proceedings of the 12th Con-
ference, Brno, CZ, 2006, s. 380-384, ISBN 80-214-3163-6

[3] Meduna, A.: Automata and languages :theory and applications /London :Springer,2000. xv,
916 s. ISBN 1-85233-074-0

