MULTILANGUAGES AND MULTIACCEPTING AUTOMATA SYSTEM

Martin Čermák

Doctoral Degree Programme (2), FIT BUT E-mail: xcerma16@stud.fit.vutbr.cz

Supervised by: Alexander Meduna E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper introduces a new area of modern theoretical computer science and deals about multilanguages processing by parallel automata system based on push-down automata.

1 INTRODUCTION

Theoretical computer science contains many formal models which describe different families of languages. This paper introduces a new model of automata system processes multilanguages instead of languages. This automata system may be useful in biomedicine or parallel compilers.

2 PRELIMINARIES

In this paper, we assume that the reader is familiar with formal language theory (see [3]).

For any integer n, $I(n) = \{1, 2, ..., n\}$. For a set, Q, |Q| denotes the cardinality of Q. For an alphabet, V, V^* represents the free monoid generated by V. The identity of V^* is denoted by ε . Set $V^+ = V^* - \{\varepsilon\}$; algebraically, V^+ is thus the free semigroup generated by V. For $w \in V^*$, |w| denotes the length of w.

A pushdown automaton is a septuple $M = (Q, \Sigma, \Omega, \delta, q_0, Z_0, F)$, where Q is a finite set of states, Σ is an alphabet, $q_0 \in Q$ is the initial state, Ω is a pushdown alphabet, δ is a finite set of rules of the form $Zqa \rightarrow \gamma p$, where $p, q \in Q, Z \in \Omega, a \in \Sigma \cup \{\varepsilon\}, \gamma \in \Omega^*, F \subseteq Q$ is a set of final states, and $Z_0 \in \Omega$ is the initial pushdown symbol. A configuration of M is any word from $\Omega^*Q\Sigma^*$. For any configuration xAqay, where $x \in \Omega^*, y \in \Sigma^*, q \in Q$, and any $Aqa \rightarrow \gamma p \in \delta, M$ makes a move from configuration xAqay to configuration $x\gamma py$ according to $Aqa \rightarrow \gamma p$, written as $xAqay \Rightarrow x\gamma py [Aqa \rightarrow \gamma p]$, or, simply, $xAqay \Rightarrow x\gamma py$. If $x, y \in \Omega^*Q\Sigma^*$ and m > 0, then $x \Rightarrow^m y$ if there exists a sequence $x_0 \Rightarrow x_1 \Rightarrow \cdots \Rightarrow x_m$, where $x_0 = x$ and $x_m = y$. Then, we say $x \Rightarrow^+ y$ if there exists m > 0 such that $x \Rightarrow^m y$, and $x \Rightarrow^* y$ if x = y or $x \Rightarrow^+ y$. If $w \in \Sigma^*$ and $Z_0q_0w \Rightarrow^* f$, where $f \in F$, then w is accepted by M, and $Z_0q_0w \Rightarrow^* f$ is an acceptance of w in M. The language of M is defined as $\mathcal{L}(M) = \{w \in \Sigma^* : Z_0q_0w \Rightarrow^* f$ is an acceptance of w}. Family of languages defined by pushdown automata is denoted by CF.

A *context-free grammar* is quadruple G = (N, T, S, P), where N and T are disjoint alphabets of nonterminal and terminal symbols, respectively, $S \in T$ is the start symbol of G and P is finite set

of rules of the form $A \to \alpha$, where $A \in N$ and $\alpha \in (N \cup T)^*$. Let $u, v \in (N \cup T)^*$, for all $A \to \alpha$, write $uAv \Rightarrow u\alpha v$. Let \Rightarrow^* denote transitive and reflexive closure of \Rightarrow . The language of *G* is defined as $L(G) = \{\omega : S \Rightarrow^* \omega, \omega \in T^*\}$.

A *n*-Multigenerative nonterminal-synchronized grammar system (denoted by *n*-KGN) is (n+1)-tuple $\Gamma = (G_1, G_2, ..., G_n, Q)$, where $G_i = (N_i, T_i, P_i, S_i)$ is a context-free grammar for each i = 1, ..., n and Q is finite set of *n*-tuples of the form $(A_1, ..., A_n)$, where $A_i \in N_i$ for all i = 1, ..., n. A sentential *n*-form of *n*-KGN is an *n*-tuple of the form $\chi = (x_1, ..., x_n)$, where $x_i \in (N \cup T)^*$ for all i = 1, ..., n. Let *n*-forms $\chi = (u_1A_1v_1, ..., u_nA_nv_n)$ and $\chi' = (u_1x_1v_1, ..., u_nx_nv_n)$ be two sentential forms, where $A_i \in N_i$, $u_i \in T^*$ and $v_i, x_i \in (N \cup T)^*$ for all i = 1, ..., n. Let $A_i \to x_i$ for all i = 1, ..., n and $(A_1, ..., A_n) \in Q$. Then $\chi \Rightarrow \chi'$ and \Rightarrow^* and \Rightarrow^+ are it's transitive-reflexive and transitive closure, respectively. The *n*-language of Γ is defined as n- $L(\Gamma) = \{(w_1, ..., w_n) : (S_1, ..., S_n) \Rightarrow^* (w_1, ..., w_n), w_i \in T_i^* \forall i = 1, 2, ..., n\}$. The language generated by Γ in the union mode is defined as $L_{union}(\Gamma) = \{w : (w_1, ..., w_n) \in n$ - $L(\Gamma), w \in \{w_1, ..., w_n\}$, the language generated by Γ in the concatenation mode is defined as $L_{conc}(\Gamma) = \{w : (w_1, ..., w_n) \in n$ - $L(\Gamma), w = w_1, ..., w_n\}$, the language generated by Γ in the grammar system is denoted by **RE**.

3 DEFINITIONS

3.1 N-ACCEPTING STATE-SYNCHRONIZING AUTOMATA SYSTEM

Let I = I(n) for some $n \ge 1$. Let $\forall i \in I$, $M_i = (Q_i, \Sigma, \Gamma_i, \delta_i, s_i, z_{i,0}, F_i)$ is push-down automaton. Then *n*-Accepting, State–Synchronizing Automata System is defined as $\vartheta = (M_1, \ldots, M_n, \Psi, S)$ where Ψ is finite set of switch rules of the form $(q_1, \ldots, q_n) \rightarrow (h_1, \ldots, h_n)$, where $\forall i \in I$, $q_i \in Q_i$, $h_i \in \{e, d\}$, *e* denote enable component of the automata system, *d* denote disable component of the automata system, S is *n*-tuple (h_1^0, \ldots, h_n^0) and denotes starting activities of components in *n*-MAS.

3.2 *N*-CONFIGURATION OF *N*-MAS

Let I = I(n) for some $n \ge 1$ and $\vartheta = (M_1, \dots, M_n, \Psi, S)$ and $\forall i \in I$, $M_i = (Q_i, \Sigma, \Gamma_i, \delta_i, s_i, z_{i,0}, F_i)$ is *n*-MAS. Then *n*-configuration is defined as *n*-tuple $\chi = (x_1^{f_1}, \dots, x_n^{f_n})$, where $\forall i \in I$: $x_i = (q_i z_i \omega_i) \in Q_i \Gamma_i^* \Sigma^*$, $h_i \in \{d, e\}$, where index d_i and e_i denotes configuration of disabled and enabled component M_i in *n*-MAS, respectively, $\omega_i \in \Sigma^*$ denotes unreaded input string.

3.3 COMPUTING STEP IN N-MAS

Let I = I(n) for some $n \ge 1$ and $\vartheta = (M_1, \dots, M_n, \Psi, S)$ is *n*-MAS, $\forall i \in I, M_i = (Q_i, \Sigma, \Gamma_i, \delta_i, s_i, z_{i,0}, F_i)$. Let $\chi = ((q_1\gamma_1z_1a_1\omega_1)^{h_1}, \dots, (q_n\gamma_nz_na_n\omega_n)^{h_n}), \chi' = ((q'_1\gamma'_1z'_1\omega'_1)^{h'_1}, \dots, (q'_n\gamma'_nz'_n\omega'_n)^{h'_n}),$ are two *n*-configurations, where $\forall i \in I, q_i, q'_i \in Q_i; \gamma'_i, z_i, z'_i \in \Gamma^*_i; \gamma_i \in \Gamma \cup \{\varepsilon\}; h_i, h'_i \in \{e, d\},$ $\omega_i, \omega'_i \in \Sigma^*, a_i \in \Sigma \cup \{\varepsilon\},$ for *i* such that $h_i = e, \gamma_i q_i a_i \to \gamma'_i q'_i \in \delta_i, \vartheta$ moves from *n*-configuration χ to χ' , denoted $\chi \vdash \chi'$, where $\forall j \in I$, where $h_j = d, q'_j = q_j$ and $\omega'_j = a_j \omega_j, \forall j \in I$, where $h_j = e, q'_j \in Q_j$ a $\omega'_j = \omega_j$. If $(q'_1, \dots, q'_n) \to (g_1, \dots, g_n) \in \Psi$, where $g_k \in \{e, d\}$ for all $k \in I$,

then $h'_k = g_k$, If $\forall (g_1, \dots, g_n) \in \underbrace{\{e, d\} \times \dots \times \{e, d\}}^{n \times} : (q'_1, \dots, q'_n) \to (g_1, \dots, g_n) \notin \Psi$, then for all

 $k \in I : h'_k = h_k.$

In the standard way, \vdash^* and \vdash^+ denote transitive-reflexive and transitive closure of \vdash , respectively.

3.4 N-MAS N-LANGUAGES

Let I = I(n) for some $n \ge 1$ and $\vartheta = (M_1, \dots, M_n, \Psi, S)$ is *n*-MAS, where $\forall i \in I, M_i = (Q_i, \Sigma, \Gamma_i, \delta_i, s_i, z_{i,0}, F_i)$ is push-down automaton. $\chi_0 = ((q_1 z_1 \omega_1)^{h_1}, \dots, (q_n z_n \omega_n)^{h_n})$ is the start and $\chi_f = ((q'_1 z'_1 \varepsilon)^{h'_1}, \dots, (q'_n z'_n \varepsilon)^{h'_n})$ is a finish *n*-configuration of *n*-MAS. *n*-language of *n*-MAS is defined as $n-L(\vartheta) = \{(\omega_1, \dots, \omega_n) | \chi_0 \vdash^* \chi_f; q'_j \in F_j \text{ for all } j \in I\}$. Futhermore, every $a \in n-L(\vartheta)$ is a multistring.

3.5 ALGORITHM OF N-KGN TO N-MAS CONVERTION

Let n-KGN $\widehat{\Gamma} = (G_1, \ldots, G_n, \widehat{Q})$, where $\forall i \in I(n), G_i = (\widehat{N}_i, \widehat{T}_i, \widehat{P}_i, \widehat{S}_i)$ is context-free grammar and n-MAS $\vartheta = (M_1, \ldots, M_n, \Psi, S)$, where $\forall i \in I(n), M_i = (Q_i, \Sigma, \Gamma_i, \delta_i, s_0^i, z_0^i, F_i)$ is pushdown automaton accepting by final state and empty stack and n- $L(\vartheta) = n$ - $L(\widehat{\Gamma})$, where $S = (l_1, \ldots, l_n) : \forall i \in I(n), l_i = e$. Then,

- $\forall i \in I(n), G_i \text{ and } M_i = (Q_i, \Sigma, \Gamma_i, \delta_i, s_i, z_{i,0}, F_i)$:
 - set $Q_i = \{\langle A \rangle : A \in \widehat{N}_i\} \cup \{r_i, f_i\}, \Sigma = \bigcup_{i=1}^n \widehat{T}_i, \Gamma_i = \Sigma \cup \widehat{N}_i \cup \{A' : A \in \widehat{N}_i\} \cup \{\Delta, \Delta'\}, F_i = \{f_i\}, s_0^i = \langle \widehat{S}_i \rangle, z_0^i = \Delta',$
 - δ_i contains rules of the form: 1) $\Delta' \langle \widehat{S}_i \rangle \to \Delta \widehat{S}_i \widehat{S}_i \langle \widehat{S}_i \rangle$, 2) $a \langle A \rangle \to ar_i$: $a \in \widehat{T}_i$ and $A \in \widehat{N}_i$, 3) $A' \langle B \rangle \to A'r_i$: $A, B \in \widehat{N}_i$, 4) $ar_i a \to r_i$: $a \in \widehat{T}_i$, 5) $A'r_i \to \langle A \rangle$: $A \in \widehat{N}_i$, 6) $\Delta \langle A \rangle \to f_i$: $A \in \widehat{N}_i$, 7) $\Delta r_i \to f_i$, 8) $\forall (A \to \alpha) \in \widehat{P}_i$, $A \langle A \rangle \to \theta(\alpha) \langle A \rangle \in \delta_i$: θ is projection from $(\widehat{N}_i \cup \widehat{T}_i)^*$ to $(\{A' : A \in \widehat{N}_i \widehat{N}_i\} \cup \widehat{T}_i)^*$, such that $\theta(\omega) = \omega'$, where ω' is made from ω^R by replacing every $A \in \widehat{N}_i$ in ω^R by A'A.
- $\Psi: \forall (A_1, \ldots, A_n) \in \widehat{Q}, \ (\langle A_1 \rangle, \ldots, \langle A_n \rangle) \to (e, \ldots, e) \in \Psi \ (f_1, \ldots, f_n) \to (e, \ldots, e) \in \Psi \ \forall (q_1, \ldots, q_n) \in Q_1 \times Q_2 \times \ldots \times Q_n, \text{ where } \{r_1, \ldots, r_n\} \cap \{q_1, \ldots, q_n\} \neq \emptyset, \ (q_1, \ldots, q_n) \to (l_1, \ldots, l_n) \in \Psi \text{ and } \forall o \in I(n): q_o \in \{r_o\} \Leftrightarrow l_o = e. \text{ For other } (q_1, \ldots, g_n) \in Q_1 \times Q_2 \times \ldots \times Q_n, \ (q_1, \ldots, q_n) \to (d, \ldots, d) \in \Psi$

3.6 THEOREM

Family of *n*-languages of *n*-KGN and family of *n*-languages of *n*-MAS are equivalent.

Proof of the Theorem 3.6

First, we prove that algorithm 3.5 is correct by following claims.

Claim A

Let $(\widehat{S}_1, \ldots, \widehat{S}_n) \Rightarrow^* (u_1 A_1 v_1, \ldots, u_n A_n v_n)$ in Γ , where $A_i \in \widehat{N}_i, v_i \in (\widehat{N}_i \cup \widehat{T}_i)^*, u_i \omega_i \in \widehat{T}_i^* \forall i \in I(n)$ and $(u_1 A_1 v_1, \ldots, u_n A_n v_n) \Rightarrow^* (u_1 \omega_1, \ldots, u_n \omega_n)$. Then $((\Delta' \langle \widehat{S}_1 \rangle u_1 \omega_1)^e, \ldots, (\Delta' \langle \widehat{S}_n \rangle u_n \omega_n)^e) \vdash^* ((\Delta \theta(v_1) A_1 \langle \widehat{A}_1 \rangle \omega_1)^{\hbar_1}, \ldots, (\Delta \theta(v_n) A_n \langle \widehat{A}_n \rangle \omega_n)^{\hbar_n})$ in ϑ .

Proof of the Claim A By induction on length of derivation.

Basis: Let $(\widehat{S}_1,...,\widehat{S}_n) \Rightarrow^0 (\widehat{S}_1,...,\widehat{S}_n)$, where $(\widehat{S}_1,...,\widehat{S}_n) \Rightarrow^* (\omega_1,...,\omega_n)$ and $\forall i \in I(n) \ \omega_i \in \widehat{T}_i^*$. Then, $((\Delta' \langle \widehat{S}_1 \rangle \omega_1)^e, \dots, (\Delta' \langle \widehat{S}_n \rangle \omega_n)^e) \vdash ((\Delta \widehat{S}_1 \widehat{S}_1' \langle \widehat{S}_1 \rangle \omega_1)^e, \dots, ((\Delta \widehat{S}_n \widehat{S}_n' \langle \widehat{S}_n \rangle \omega_n)^e)$ [by 1 of δ_i] $\vdash ((\Delta \widehat{S}_1 \widehat{S}_1' r_1 \omega_1)^e, \dots, ((\Delta \widehat{S}_n \widehat{S}_n' r_n \omega_n)^e)$ [by 3 of δ_i] $\vdash ((\Delta \widehat{S}_1 \langle \widehat{S}_1 \rangle \omega_1)^e, \dots, ((\Delta \widehat{S}_n \langle \widehat{S}_n \rangle \omega_n)^e)$ [by 5 of δ_i].

Induction Hypothesis:

Suppose that Claim A holds for j and fewer derivations steps.

Induction Step:

Consider any derivation of the form $(\widehat{S}_1, \ldots, \widehat{S}_n) \Rightarrow^{j+1} (u_1 x_1 v_1, \ldots, u_n x_n v_n)$, where $\forall i \in I(n)$, $u_i x_i v_i = u_i u'_i B_i v'_i, \ u_i, u'_i \in \widehat{T}_i^*, \ B_i \in \widehat{N}_i, \ v_i, v'_i, x_i \in (\widehat{N}_i \cup \widehat{T}_i)^*, \text{ for } u_i \omega_i \in \widehat{T}_i^* \ (u_1 u'_1 B_i v'_1 v_1, \ \dots, \ u_i v'_i v_i) \in \widehat{T}_i^*$ $u_n u'_n B_n v'_n v_n \Rightarrow^* (u_1 \omega_1, \dots, u_n \omega_n)$. This derivation can be expressed as $(\widehat{S}_1, \dots, \widehat{S}_n) \Rightarrow^j (u_1 A_1 v_1, \dots, v_n \omega_n)$, $u_n A_n v_n$ \Rightarrow $(u_1 x_1 v_1, \dots, u_n x_n v_n)$, where $\forall i \in I(n) A_i \in \widehat{N}_i$. By induction hypothesis $((\Delta' \langle \widehat{S}_1 \rangle$ $(u_1\omega_1)^e, \ldots, (\Delta'\langle \widehat{S_n} \rangle u_n\omega_n)^e) \vdash^* ((\Delta\theta(v_1) A_1\langle A_1 \rangle \omega_1)^{h_1}, \ldots, ((\Delta\theta(v_n)A_n\langle A_n \rangle \omega_n)^{h_n})))$. From definition of *n*-KGN, $(A_1, \ldots, A_n) \in \widehat{Q}$ and from algorithm it is obvious that $(\langle A_1 \rangle, \ldots, \langle A_n \rangle) \rightarrow \langle A_n \rangle$ $(e,\ldots,e) \in \Psi$ and for every $A_i \to x_i \in \widehat{P}_i$ there is $A_i \langle A_i \rangle \to \theta(x_i)$. Therefore $h_1,\ldots,h_n = e$ and $((\Delta \theta(v_1)A_1 \langle A_1 \rangle \omega_1)^e, \ldots, ((\Delta \theta(v_n)A_n \langle A_n \rangle \omega_n)^e) \vdash ((\Delta \theta(v_1)(x_1)^R \langle A_1 \rangle \omega_1)^e, \ldots, ((\Delta \theta(v_1)(x_n)^R \langle A_n \rangle \omega_n)^e) \vdash ((\Delta \theta(v_1)(x_n)^R \langle A_n \rangle \omega_n)^e)$ $\langle A_n \rangle \omega_n \rangle^e = ((\Delta \theta(v_1')(u_1'B_1'B_1)^R \langle A_1 \rangle \omega_1)^e, \dots, ((\Delta \theta(v_n')(u_n'B_n'B_n)^R \langle A_n \rangle \omega_n)^e))$. There is $a_i \in$ $\Gamma_i - (\widehat{N}_i \cup \{\Delta, \Delta'\})$ on the top of the stack in each automaton. Hence, from rules of the form 2 and 3 in δ_i and from Ψ , $((\Delta \theta(v_1')(u_1'B_1' B_1)^R \langle A_1 \rangle \omega_1)^e, \ldots, ((\Delta \theta(v_n')(u_n'B_n'B_n)^R \langle A_n \rangle \omega_n)^e) \vdash$ $((\Delta \Theta(v_1')(u_1'B_1'B_1)^R r_1 \omega_1)^e, \ldots, ((\Delta \Theta(v_n')(u_n'B_n'B_n)^R r_n \omega_n)^e).$ Because $u_i u_i' B_i v_i' \Rightarrow^* u_i \omega_i, u_i \omega_i =$ $u_i u'_i \omega'_i$. For every component M_i of ϑ , there is a sequence of moves $\Delta \theta(v'_i) B_i B'_i (u'_i)^R r_i u'_i \omega'_i \vdash^*$ $\Delta \Theta(v'_i) B_i B'_i r_i \omega'_i$ (by 4 of δ_i) and $\Delta \Theta(v'_i) B_i B'_i r_i \omega'_i \vdash \Delta \Theta(v'_i) B_i \langle B_i \rangle u'_i \omega'_i$ (by 5 of δ_i). From Ψ , it is obvious, that each automaton M_i which is in state $\langle B_i \rangle$ is blocked until any other automaton M_i is in the state r_i . Hence, $((\Delta \theta(v_1')(u_1'B_1'B_1)^R r_1 u_1'\omega_1')^e, \ldots, ((\Delta \theta(v_n')(u_n'B_n'B_n)^R r_n u_n'\omega_n')^e) \vdash^*$ $((\Delta \theta(v_1')B_1 \langle B_1 \rangle \omega_1')^{\ell_1}, \ldots, ((\Delta \theta(v_n')B_n \langle B_n \rangle \omega_n')^{\ell_n}).$ The Claim A holds. П

Claim B

If $(\widehat{S}_1, \ldots, \widehat{S}_n) \Rightarrow^* (\omega_1, \ldots, \omega_n)$ in $\widehat{\Gamma}$, where $\forall i \in I(n), \omega_i \in \widehat{T}_i^*$, there is a sequence of movies $(\Delta' \langle \widehat{S}_1 \rangle \omega_1)^e, \ldots, (\Delta' \langle \widehat{S}_n \rangle \omega_n)^e) \vdash^* ((f_1)^e, \ldots, (f_n)^e)$ in ϑ .

Proof of the Claim B

Consider any successful derivation $(\widehat{S}_1, ..., \widehat{S}_n) \Rightarrow^* (\omega_1, ..., \omega_n)$. There must be multiform $(u_1A_1v_1, ..., u_nA_nv_n)$ such that $(\widehat{S}_1, ..., \widehat{S}_n) \Rightarrow^* (u_1A_1v_1, ..., u_nA_nv_n) \Rightarrow (u_1x_1v_1, ..., u_nx_nv_n) = (\omega_1, ..., \omega_n)$. By the claim (A), $(\Delta' \langle \widehat{S}_1 \rangle \omega_i)^e, ..., (\Delta' \langle \widehat{S}_n \rangle \omega_n)^e) \vdash^* (\Delta \theta(v_1)A_1 \langle A_1 \rangle \omega'_1)^{h_1}, ..., (\Delta \theta(v_n)A_n \langle A_n \rangle \omega'_n)^{h_n}$ and $\forall i \in I(n)$, $\omega_i = u_i \omega'_i$. Because $(A_1, ..., A_n) \in \widehat{Q}$, $(\langle A_1 \rangle, ..., \langle A_n \rangle) \to (e, ..., e) \in \Psi$, $\forall i \in I(n)$ $h_i = e$ and ϑ moves to multiconfiguration $(\Delta \theta(x_1v_1) \langle A_1 \rangle \omega'_1)^e, ..., (\Delta \theta(x_nv_n) \langle A_n \rangle \omega'_n)^e$. It is obvious that $\forall i \in I(n)$, $\omega'_i = x_i v_i$, because $\omega_i = u_i x_i v_i = u_i \omega'_i$. Therefore, there are two possibilities of the top symbol on the stack in each automaton of ϑ . Either, top symbol is Δ , than $x_i v_i = \varepsilon$ and $\omega_i = \varepsilon$, that is M_i moves to f_i . Furthermore, if any other automaton M_j is in the state r_j , automaton M_i is blocked. Or the top symbol is $a_i \in \widehat{T}_i$, than $\Delta(x_i v_i)^R \langle A_i \rangle x_i v_i \vdash \Delta(x_i v_i)^R r_i x_i v_i$ (by rule of the form 2 of δ_i) and $\Delta(x_i v_i)^R r_i x_i v_i \vdash^* \Delta r_i$ (by rules type 4 of δ_i), $\Delta r_i \vdash f_i$ (by 7) and automaton M_i is blocked until any other automaton M_j of ϑ is in the state r_j . Then ϑ is in the multiconfiguration $((f_1)^e, ..., (f_n)^e)$ and the Claim (B) holds.

Claim C

If $(\Delta' \langle \widehat{S_1} \rangle \omega_1)^e, \dots, (\Delta' \langle \widehat{S_n} \rangle \omega_n)^e) \vdash^* ((f_1)^e, \dots, (f_n)^e)$ in ϑ , there is a sequence of derivations $(\widehat{S_1}, \dots, \widehat{S_n}) \Rightarrow^* (\omega_1, \dots, \omega_n).$

Proof of the Claim C

Consider any successful acceptance (I) of the form $(\Delta' \langle \widehat{S}_1 \rangle \omega_1)^e, \ldots, (\Delta' \langle \widehat{S}_n \rangle \omega_n)^e) \vdash^* ((f_1)^e, \ldots, (f_n)^e)$ in ϑ . From algorithm (by rules 1 of δ_i) it is obvious, that first step of ϑ must be

 $(\Delta' \langle \widehat{S_1} \rangle \omega_1)^e, \dots, (\Delta' \langle \widehat{S_n} \rangle \omega_n)^e) \vdash ((\Delta \widehat{S_1} \widehat{S_1}' \langle \widehat{S_1} \rangle \omega_1)^{l_1}, \dots, ((\Delta \widehat{S_n} \widehat{S_n}' \langle \widehat{S_n} \rangle \omega_n)^{l_n}) \text{ and from construc-}$ tion of Ψ there are two possibilities of activities of automata in ϑ : $(\langle \widehat{S}_1 \rangle, \dots, \langle \widehat{S}_n \rangle) \rightarrow (d, \dots, d) \in$ Ψ , but $\forall i \in I(n), l_i = d$ and ϑ is not successful for any input. Therefore, $(\langle \widehat{S}_1 \rangle, \dots, \langle \widehat{S}_n \rangle) \to$ $(e,\ldots,e) \in \Psi$ and $\forall i \in I(n), l_i = e$. From rules of the form 3 and 5 in δ_i is clear that ϑ must do fallowing two steps: $((\Delta \widehat{S_1} \widehat{S_1}' \langle \widehat{S_1} \rangle \omega_1)^e, \ldots, ((\Delta \widehat{S_n} \widehat{S_n}' \langle \widehat{S_n} \rangle \omega_n)^e) \vdash ((\Delta \widehat{S_1} \widehat{S_1}' r_1 \omega_1)^e, \ldots, ((\Delta \widehat{S_n} \widehat{S_n}' \langle \widehat{S_n} \rangle \omega_n)^e))$ $r_n \omega_n)^e$ $\vdash ((\Delta \widehat{S}_1 \langle \widehat{S}_1 \rangle \omega_1)^e, \dots, ((\Delta \widehat{S}_n \langle \widehat{S}_n \rangle \omega_n)^e)$ Consider any multiconfiguration $((\Delta A_1 \langle A_1 \rangle \omega_1')^e, \dots, ((\Delta \widehat{S}_n \langle \widehat{S}_n \rangle \omega_n)^e)$..., $((\Delta A_n \langle A_n \rangle \omega'_n)^e)$, where $((\Delta A_1 \langle A_1 \rangle \omega'_1)^e, \ldots, ((\Delta A_n \langle A_n \rangle \omega'_n)^e) \vdash^* ((f_1)^e, \ldots, (f_n)^e)$. ϑ must do these steps: $((\Delta A_1 \langle A_1 \rangle \omega_1')^e, \ldots, ((\Delta A_n \langle A_n \rangle \omega_n')^e) \vdash ((\Delta \gamma_1 \langle A_1 \rangle \omega_1')^e, \ldots, ((\Delta \gamma_n \langle A_n \rangle \omega_n')^e) \vdash$ $((\gamma'_1q_1\omega'_1)^{l_1}, \ldots, ((\gamma'_nq_n\omega'_n)^{l_n}), \text{ and (from 2, 3 and 6 of } \delta_i \text{ and from } \Psi) \text{ for each } i \in I(n) \text{ holds:}$ If $\gamma_i = \varepsilon$ then $\gamma'_i = \omega'_i = \varepsilon$, $q_i = f_i$ and $l_i = \sigma$, where $\sigma \in \{e, d\}$, else $\gamma'_i = \Delta \gamma_i$, $q_i = r_i$ and $l_i = e$. Furthermore, if $\gamma_1, \ldots, \gamma_n = \varepsilon$ (i.e. $\forall j \in I(n) : q_j = f_j$) then $\sigma = e$. Otherwise $\sigma = d$. Now, there are only three applicable types of moves under each automaton M_i which is in the state $r_i: ar_i a \to r_i: a \in \widehat{T}_i$ and M_i still active in the next computation step, or $B'_i r_i \to a$ $\langle B_i \rangle$: $B_i \in \widehat{N}_i$, than next top symbol on the stack must be B_i and M_i is blocked until any automaton M_i of ϑ is in the state r_i , or $\Delta r_i \to f_i$ and M_i is blocked until any automaton M_j of ϑ is in the state r_i . These three types of steps are repeatedly applied on active components of ϑ until any automaton M_i is in the state r_j . Hence and from construction of Ψ , fallowing configuration of ϑ must be either $((f_1)^e, \dots, (f_n)^e)$ (multistring is accepted), or $((\Delta \gamma'_1 B_1 \langle B_1 \rangle \omega''_1)^e, \ldots, ((\Delta \gamma'_n B_n \langle B_n \rangle \omega''_n)^e) \text{ where } \forall i \in I(n): B_i \in \widehat{N}_i \text{ and } (\langle B_1 \rangle, \ldots, \langle B_n \rangle) \to I$ $(e,\ldots,e) \in \Psi$. For any other n-tuple of states, ϑ blocked all automata (by Ψ) and multistring is not accepted. It is obvious that we can express (I) as $(\Delta' \langle \widehat{S}_1 \rangle \omega_1)^e, \dots, (\Delta' \langle \widehat{S}_n \rangle \omega_n)^e) \vdash^3 ((\Delta \widehat{S}_1 \langle \widehat{S}_1 \rangle \omega_1)^e, \dots, ((\Delta \widehat{S}_n \langle \widehat{S}_n \rangle \omega_n)^e) \vdash^{m_1} ((\Delta \gamma_1^{(1)} A_1^{(1)} \langle A_1^{(1)} \rangle \omega_1^{(1)})^e, \dots, ((\Delta \gamma_n^{(1)} A_n^{(1)} \langle A_n^{(1)} \rangle \omega_n^{(1)})^e) \dots \vdash^{m_k} ((\Delta \gamma_1^{(k)} A_1^{(k)} \langle A_1^{(k)} \rangle \omega_1^{(k)})^e, \dots, ((\Delta \gamma_n^{(k)} A_n^{(k)} \langle A_n^{(k)} \rangle \omega_n^{(k)})^e) \vdash^{m_{k+1}} ((f_1)^e, \dots, (f_n)^e) \text{ for all } i \in \mathbb{C}$ $I(k+1), m_i \ge 1$. This computation of ϑ we can simulate by $\widehat{\Gamma}$ as $(\widehat{S}_1, \dots, \widehat{S}_n) \Rightarrow (u_1^{(1)} A_1^{(1)} v_1^{(1)}, \dots, \widehat{S}_n)$ $u_{n}^{(1)}A_{n}^{(1)}v_{n}^{(1)}) \Rightarrow \dots \Rightarrow (u_{1}^{(k+1)}, \dots, u_{n}^{(k+1)}) = (\omega_{1}, \dots, \omega_{n}) \text{ where } \forall i \in I(n), \forall j \in I(k+1): u_{i}^{(j)} \in \widehat{T}_{i}^{*}, A_{i}^{(j)} \in \widehat{N}_{i}, v_{i}^{(j)} \in (\widehat{T}_{i} \cup \widehat{N}_{i})^{*} \text{ and } u_{i}^{(j)}\omega_{i}^{(j)} = \omega_{i}. \text{ Hence, the Claim (C) holds.}$

It is well known family of 2-KGN languages, generated by operations union, concatenation and the first under multilanguages (see [1, 2]), are equivalent with family of **RE** languages. Hence, from claims (A), (B) and (C), it is clear that $n-L(\vartheta) = n-L(\widehat{\Gamma})$ and the Theorem 3.6 holds.

ACKNOWLEDGEMENTS

This work was partially supported by the BUT FIT grant FIT-S-10-2, the FRVŠ grant MŠMT 2010: FR2581/2010/G1 and the research plan MSM0021630528.

REFERENCES

- Meduna, A., Lukáš, R.: Multigenerative Grammar Systems, In: Schedae Informaticae, roč. 2006, č. 15, Krakov, PL, s. 175-188, ISSN 0860-0295
- [2] Lukáš, R.: Power of Multigenerative Grammar Systems, In: Proceedings of the 12th Conference, Brno, CZ, 2006, s. 380-384, ISBN 80-214-3163-6
- [3] Meduna, A.: Automata and languages :theory and applications /London :Springer,2000. xv, 916 s. ISBN 1-85233-074-0