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ABSTRACT

An implication in MV-logic is a mapping I : [0,1]2→ [0,1], which is an extension of the classical
implication. There are many ways of constructing fuzzy implications. Best known are (S,N)-
implications and R-implications. In this paper we deal with the other possibility, which use
a function of a single variable. Such construction is well-known in case of the t-norms. We
study properties of this type of implications and the connections between our implications and
mentioned well-known classes.

1 INTRODUCTION

Fuzzy implications, which are a generalization of the classical two-valued implications to the
multi-valued setting, play an important role in many applications. For instance, (S,N−)implica-
tions generalize the material implication from the classical logic with a t−conorm instead of
disjunction, while R−implications obtained from a t−norm generalize the intuitionistic (resid-
ual) logic implication to the framework of fuzzy logic, whereas QL−implications are the fuzzy
counterparts of quantum logic implication. Each of these families possesses many different
properties.

Definition 1.1 A unary operator n : [0,1]→ [0,1] is called a fuzzy negation if, for any x,y ∈
[0,1],

• x < y⇒ n(y)≤ n(x),

• n(0) = 1,n(1) = 0.

The negation n is called a strict negation if and only if the mapping n is continuous and strictly
decreasing. A strict negation is strong if it is an involution. Best known fuzzy negation is
Ns(x) = 1− x called a Standard negation.

Best known extension of the conjunction is called a t-norm. (Note that t-norm is not the only
possibility of extending classical conjunction.)



Definition 1.2 A triangular norm (t-norm for short) is a binary operation on the unit interval
[0,1], i.e., a function T : [0,1]2→ [0,1] such that for all x,y,z ∈ [0,1], the following four axioms
are satisfied:
(T1) Commutativity T (x,y) = T (y,x),
(T2) Associativity T (x,T (y,z)) = T (T (x,y),z),
(T3) Monotonicity T (x,y)≤ T (x,z) whenever y≤ z,
(T4) Boundary Condition T (x,1) = x.

Dual operator to a t-norm is called a t-conorm, denoted S. The operator S can be obtained as
S(x,y) = 1−T (1− x,1− y). For more information about this topic, see [5].

In the literature, we can find several different definitions of fuzzy implications. We will use the
following one, which is equivalent to the definition introduced by Fodor and Roubens in [4].
The readers can obtain some background by reading [2] and [6].

Definition 1.3 A function I : [0,1]2 → [0,1] is called a fuzzy implication if it satisfies the fol-
lowing conditions:

(I1) I is decreasing in its first variable,

(I2) I is increasing in its second variable,

(I3) I(1,0) = 0, I(0,0) = I(1,1) = 1.

2 PROPERTIES AND CLASSES OF IMPLICATIONS

In following definition we describe some important properties of fuzzy implications.

Definition 2.1 A fuzzy implication I : [0,1]2→ [0,1] satisfies:

(NP) the left neutrality property, or is called left neutral, if

I(1,y) = y; y ∈ [0,1],

(EP) the exchange principle if

I(x, I(y,z)) = I(y, I(x,z)) for all x,y,z ∈ [0,1],

(IP) the identity principle if
I(x,x) = 1; x ∈ [0,1],

(OP) the ordering property if

x≤ y ⇐⇒ I(x,y) = 1; x,y ∈ [0,1],

Definition 2.2 Let I : [0,1]2→ [0,1] be a fuzzy implication. The function NI defined by NI(x) =
I(x,0) for all x ∈ [0,1], is called the natural negation of I.



One of the well-known classes of implications is represented by (S,N)-implications, which are
based on given t-conorm and negation N.

Definition 2.3 A function I : [0,1]2 → [0,1] is called an (S,N)−implication if there exist a t-
conorm S and fuzzy negation N such that

I(x,y) = S(N(x),y), x,y ∈ [0,1].

If N is a strong negation, then I is called a strong implication.

The following characterization of (S,N)−implications is from [1].

Theorem 2.4 (Baczyňski and Jayaram [1], Theorem 5.1) For a function I : [0,1]2→ [0,1], the
following statements are equivalent:

• I is an (S,N)-implication generated from some t-conorm and some continuous (strict,
strong) fuzzy negation N.

• I satisfies (I2), (EP) and NI is a continuous (strict, strong) fuzzy negation.

Another way of extending the classical binary implication operator to the unit interval [0,1] uses
the residuation I with respect to a left-continuous triangular norm T

I(x,y) = max{z ∈ [0,1];T (x,z)≤ y}.

The following characterization of R−implications is from [4].

Theorem 2.5 (Fodor and Roubens [4], Theorem 1.14) For a function I : [0,1]2 → [0,1], the
following statements are equivalent:

• I is an R-implication based on some left-continuous t-norm T.

• I satisfies (I2), (OP), (EP), and I(x, .) is a right-continuous for any x ∈ [0,1].

3 GENERATED IMPLICATIONS

It is well-known that it is possible to generate t-norms from one variable functions. It means that
it is enough to consider the one variable function instead of two variable function. Moreover,
we can generate implications in a similar way as the t-norms. One of these possibilities is
described in the next theorem. We use pseudo-inverse of the function f , which is defined for
non-increasing function as f (−1)(x) = sup{z ∈ [0,1]; f (z) > x}, with the convention sup /0 = 0.

Theorem 3.1 Let f : [0,1]→ [0,∞] be a strictly decreasing function such that f (1) = 0. Then
the function I f : [0,1]2→ [0,1] which is given by

I f (x,y) =

{
1 if x≤ y,
f (−1)( f (y+)− f (x)) otherwise,

where f (y+) = lim
y→y+

f (y) and f (1+) = f (1) is a fuzzy implication.



Proof can be found in [3]. Now we turn our attention to the relations with (S,N)- and R-
implications and our implications I f .

Proposition 3.2 Let f : [0,1]→ [0,∞] be a strictly decreasing function such that f (1) = 0, then
I f satisfies IP and NP. Moreover, f is continuous in x = 1 if and only if I f satisfies OP.

Directly from Definition 2.1 and the following equivalence for the strictly decreasing function
f :

f (−1)(x0) = 1 ⇐⇒ x0 ≤ lim
x→1−

f (x) = f (1−),

we get the condition for IP and NP. If f is discontinuous in x = 1, then ∃x0 > 0; f (−1)(x0) = 1.
Now ∃x,y ∈ [0,1];x > y∧ f (y+)− f (x) < x0, which leads to I f (x,y) = 1 i.e. violation of OP.
See [3] for closer explanation.

Proposition 3.3 Let f : [0,1]→ [0,∞] be a continuous strictly decreasing function such that
f (1) = 0, then the implication I f satisfies EP.

Again, proof can be found in [3]. Since in previous the proposition we have the continuous
function f and the EP is needed for both R- and (S,N)-implications, we assume continuous f
also in the following proposition:

Proposition 3.4 Let f : [0,1]→ [0,c] be a continuous bounded function such that f (1) = 0,
then the negation NI f based on I f is strong negation.

The last theorem of this section is a corollary of previous propositions and Theorems 2.4, 2.5.

Theorem 3.5 Let f : [0,1] → [0,∞] be a continuous strictly decreasing function such that
f (1) = 0, then I f is an R-implication given by some left-continuous t-norm, and more if f (0) <
∞, then I f is an (S,N)-implication, too.

Example 3.6 Let us have a function f : [0,1]→ [0,∞], given by f (x) = (1−x)2. The implication
I f is

I f (x,y) =

{
1 x≤ y,
1−

√
(1− y)2− (1− x)2 otherwise.

This I f is actually an R-implication given by the t-norm T (x,y)= max(0,1−
√

(1− x)2 +(1− y)2) :
An R-implication I is given by I(x,y) = max{z ∈ [0,1];T (x,z)≤ y}. Since T (x,1) = x if x ≤ y,
obviously I(x,y) = 1. In case x > y we get

max(0,1−
√

(1− x)2 +(1− z)2)≤ y,

(1− x)2 +(1− z)2 ≤ (1− y)2,

z = 1−
√

(1− y)2− (1− x)2,

therefore the R-implication I is our implication I f . Note that T is an Archimedean t-norm with
the generator f .



By the previous theorem, I f is also an (S,N)-implication. Therefore there is a question, which
t-conorm S and negation n produce this implication:
Because of the Theorem 2.4 and the axiom (S4) S(x,0) = x, we have that n is actually a natural
negation given by I f , i.e. n(x) = 1−

√
2x− x2. If the t-conorm S is given by

S(x,y) = 1−
√

max((x−2) · x+1−2y+ y2,0),

mapping S(n(x),y) is implication I f . This t-conorm can be obtained using the natural negation
of I f and the t-norm T as

S(x,y) = n(T (n(x),n(y))).

4 CONCLUSIONS

Findings in the previous sections allows to make the following characterization of the implica-
tions I f :

• Let f be a bounded and continuous function, then I f is R- and (S,N)-implication.

• Let f be a continuous and not bounded, then I f is R- but not (S,N)-implication.

• There exists (not-continuous) functions f violating EP. Therefore some I f are neither R-
nor (S,N)-implications.

The I f implications are the best explored generated implications to-date, but there are also
other possibilities to define the implication using the function of one variable. We continue our
research on this topic.
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