
ROBUST STABILITY OF AIR-TUNNEL MODEL 

Michal Dobias 
Doctoral Degree Programme (3), FEEC BUT 

E-mail: xdobia04@stud.feec.vutbr.cz 

Supervised by: Petr Pivoňka 
E-mail: pivonka@feec.vutbr.cz 

ABSTRACT 

Text deals briefly with robust stability which is one of the characteristics of a robust sys-
tem. This attribute is described in the text; there are investigations carried out of robust 
stability by complex characteristics on taken models (continuous and discrete) and also on 
continuous and discrete feedback loop. These results are compared with the results of the 
physical model. All simulations, computations and results are obtained with MATLAB-
Simulink and B&R Automation Studio.  

1. INTRODUCTION 

In this article we will deal more closely with the observation of robust stability of the air-
tunnel model. We will obtain its mathematical description, define the uncertainties of its 
parameters, and find boundary values for the complex characteristic of the model in 
question. We will further inspect the differences of this attribute for continuous and 
discrete control loop. The results obtained will be later verified on the physical model. 

2. PROBLEM 

Our task is to control the model of the air-tunnel which is situated in our laboratory and it 
contains non-linearity. This non-linearity is caused by barriers which are in the tunnel 
(creating turbulences) and we use ventilator (non-linear element) to drive the air into the 
tunnel and to measure the air-flow. We control this tunnel in basic feedback loop around 
operating point 30 % because in this part of the operating range the influence of the non-
linearity is minimal. We will use algorithm PID (3) or PSD (4) for the controller with the 
use of the Ziegler-Nichols tuning method.  

3. ROBUST STABILITY 

Dictionary defines the expression of robustness as a force, potency or “attribute to be 
strong”. We speak about the dynamics of closed loop which enables the controller to exe-
cute an activity according to the requirements in a chosen system; also in a case when a 
system which changes its properties is concerned. 

One of the primary conditions of robustness of the closed loop is the condition of robust 
stability. This term is bounded with uncertainty or indefinity of system and says that: The 



closed loop must be stable for all possible changes of parameters of the plant which are de-
fined by the volume of this uncertainty of the system. For example we have plant 
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Whose transfer function contains parameter which holds: maxmin ;aaa∈ . The definition 

says that the closed loop must be stable for all possible values of parameter a from the 
taken interval. By ‘stable’ we understand that the complex characteristic of open-loop con-
trol circuit ( )ωjF0  with growing frequency ( 0≥ω ) does not intersect the point ( )0;1 j−  

and passes to the right of this point. 

 

Figure 1: Robust stability 

 

3.1. AIR-TUNNEL MODEL 

To verify the robust stability we have chosen a model of air-tunnel. This contains the proper 
air-tunnel which has at the entrance a ventilator attached which has the function of an actuator 
(controlled by PLC B&R in a range 0÷10V with 12-bit D/A converter). This ventilator drives 
air into the air-tunnel. The driving ventilator exhibits a 5÷8 % dead zone at the 

initial point of the coordinates. At the end of the tunnel there is a second ventilator 
which has the function of air-flow sensor and this linear motion is converted into rotational. 
By means of optoelectronic sensor the rotational motion is converted to electric signal it is 
further processed by additional electronics which sends this processed signal to 12-bit A/D 
converter in PLC B&R. The PLC B&R is connected to PC by Ethernet where runs the pro-
gram MATLAB-Simulink by which the whole task is carried out. Basic scheme of the given 
model is presented in Fig. 2 (left). On the basis of experience with the model we will assign 
the order of the mathematical model to 3rd and its transfer function is 
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We assign the parameters of the model with estimation and adjust them with an experimental 
method by comparing the step response of the physical model without using the identification 
algorithm. Where n1 = 0.20; n0 = 2,80; a1 = 10,00; a2 = 10,00; a3 = 2,00 and for each of these 
parameters we accept an uncertainty of ± 10 % from the real system. 

In Fig. 2 (right) we can see the complex characteristic of the model with nominal values 
( )ωjG  and then the characteristics ( ) minS

jG ω , ( ) maxS
jG ω , ( ) minZ

jG ω  and ( ) maxZ
jG ω  (zero 

order hold, sampling time 0.2 s). These characteristics were obtained by graphical comparison 
of all the possible combinations of the maximal and minimal values of uncertain parameters.  

 

 

 

Figure 2: The model of the real system of the air-tunnel (left) and complex characteristic 
of the model (right). 

3.2. CONTROLLER AND CLOSED-LOOP CONTROL 

By using the controller to control the air-tunnel model the situation of complex characteris-
tic changes markedly because the controller changes frequency properties of open-loop 
control circuit. For comparison we will use the continuous (3) and discrete (4) PID control-
ler with filtration of derivation: 
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And the parameters gained by the modified Ziegler-Nichols method are K = 8.00; 
Ti = 5.00; Td = 0.25; N = 3.00; T = 0.20 s (sampling time). 



 
 

Figure 3: Kharitonov’s plot of characteristic polynomial of the system. On the right side 
there is a detail around the beginning of the system of coordinates.  

On the basis of Fig. 3 we can claim that uncertainties of the system will not cause the in-
stability of the continuous control loop. This claim does not have to be true for the discrete 
control loop. Because of that we have to verify the behaviour of the discrete control loop.  

In Fig. 4 (left) we can see that the controller caused a change in the shape of the original 
complex characteristic ( )ωjG . The shape of ( ) max0 Z

jF ω  indicates instability of the control 

loop. For this reason it is necessary to design a controller which stabilizes the control loop. 
The parameters of the controller are as follows: K = 1.00; Ti = 3.00; Td = 0.25; N = 3.00; 
T = 0.20 s (sampling time). From the shape of the complex characteristic of 
( )

Zstab
jF ω0  (in Fig. 4 left) it is obvious that this change of parameters stabilized the given 

control loop. 

 

 
 

Figure 4: Nyquist plot (left) of the open-loop system (controller without anti-windup or 
the restriction of the actuator). Step response (right) of the closed-loop system (controller 

without anti-windup or the restriction of the actuator). 



 

Figure 5: The comparison of control process in a real system and control loop with dis-
crete controller (4) and continuous model (contains anti-windup and restriction of the ac-

tuator and the 12-bit A/D and D/A converter). 

4. CONCLUSION 

Our task was to design a controller for a real system whose mathematical description we 
know only approximately. In the beginning we found the worst alternative of complex 
characteristic for given mathematical model. The worst alternative could cause that the 
controller designed by us will fail to assure the stability of the control loop or it could even 
cause the instability of the loop. When we know that the ( ) max0 Z

jF ω  is unstable, we were 

forced to adjust the parameters of the controller so that the characteristic of the open loop 
fulfils the condition of robust stability. We can observe this change in Fig. 4 (left) and the 
consequences on the step response in Fig. 4 (right). Fig. 5 is the most important result be-
cause we can see there the application of the discrete controller (4) designed by us on the 
real model of the air-tunnel and its comparison with control loop which contains a discrete 
controller (4) and a continuous system with nominal values of uncertain parameters. From 
the results obtained in Fig. 4 (left) it is not clear whether the instability was caused by utili-
zation of  PSD controller instead of PID one or by neglecting the dead time which is 
caused by discretization of the continuous model. 
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