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Ondřej Lengál
Master Degree Programme (2), FIT BUT

E-mail: xlenga00@stud.fit.vutbr.cz

Supervised by: Tomáš Vojnar
E-mail: vojnar@fit.vutbr.cz

ABSTRACT

The structure of numerous computer systems resembles trees. Special techniques need to be
employed when performing formal verification of such systems. Some of these techniques use
finite tree automata and demand special manipulation. Current libraries for finite tree automata
have limitations that make them inappropriate for some of these techniques. This paper proposes
a design of a flexible library that allows efficient operations on nondeterministic finite tree
automata.

1 INTRODUCTION

Trees play a crucial role in computer science. They recur in many of its fields, from the repre-
sentation of programs in the form of abstract syntax trees, through the use for fast data retrieval
in search trees, to tree topologies of computer networks. It is not surprising that trees are often
a natural way to represent a model of many types of systems including safety-critical systems

Software errors in safety-critical systems may cause severe losses of money and, in the worst
case, even human lives (the Ariane 5 failure is perhaps the best-known case of an expensive
software failure). There are several means which help to avoid software bugs in such systems,
one of them being verification based on formal mathematical methods, formal verification.

Formal verification of computer systems has gained in popularity in recent years. A popular
approach to formal verification is model checking, a method based on checking whether a given
system conforms to given specification by systematically searching its state space. In the real
world, there exist systems with state spaces that are infinite, though they often have regular
structure, e.g. queues or stacks. In order to handle such cases, regular model checking has been
proposed [1]. Configurations of such systems can be represented as finite words over finite
alphabet, transitions are represented as relations over words. Then finite (word) automata over
the alphabet can be used to represent sets of configurations of the system and finite (word)
transducers can be used to express the transition relation.

However, there are also systems that do not have a linear structure, which would enable natu-
ral encoding of their configuration into finite words. A special case of these are systems with
tree-like structure, such as parameterized tree networks or heaps. For such cases, it is conve-
nient to generalise the method to regular tree model checking [2], where finite tree automata,



a generalisation of finite automata to trees, and finite tree transducers are used. Nonetheless
when used for reachability analysis, this basic approach may suffer from problems with infinite
number of configurations, as the transducers may generate ever new configurations. Therefore
various acceleration techniques that ensure finiteness of the method for the majority of real
world problems have been proposed. These methods may need to perform sophisticated opera-
tions upon finite tree automata (transducers). In order to conduct the operations in verification
of non-trivial systems in acceptable time, smart data structures and algorithms must be used.
This work attempts to create an implementation of a tree automata library that exploits these
optimizations.

2 PRELIMINARIES

A ranked alphabet is a couple (F ,Arity) where F is a finite set of symbols and Arity is a
mapping Arity : F → N (N denotes the set of non-negative integer numbers). Arity( f ), where
f ∈ F , is the arity of f . The set of symbols of arity p is denoted by Fp. Ground terms T (F )
of an alphabet F are defined by the following: (i) F0 ⊆ T (F ) and (ii) if p ≥ 1, f ∈ Fp and
t1, . . . , tp ∈ T (F ), then f (t1, . . . , tp) ∈ T (F ). Ground terms form tree-like structures, therefore
they are often used to represent trees.

A (bottom-up) nondeterministic finite tree automaton (NFTA) over F is a 4-tuple
A =(Q,F ,Q f ,∆), where Q is a finite set of states (Q∩F = /0), Q f ⊆Q is a set of final states and
∆ is a set of transition rules f (q1, . . . ,qn)→ q, where n ∈ N, f ∈ Fn and q,q1, . . . ,qn ∈ Q. The
run of A on t is obtained in this way: first, each leaf a ∈ F0 is assigned a state qa ∈Q according
to the transition rule a→ qa ∈∆, then for each internal node, if the subterms t1, . . . , tn of the node
are labeled with states q1, . . . ,qn and if rule f (q1, . . . ,qn)→ q∈ ∆, then the term f (t1, . . . , tn) can
be labelled with q (this is a move relation written as f (t1, . . . , tn)→A q). →∗A is the reflexive and
transitive closure of →A . A ground term t ∈ T (F ) is accepted by a NFTA A = (Q,F ,Q f ,∆)
if there exists q ∈Q f such that t→∗A q. The language accepted by the automaton A is the set of
ground terms that are accepted, i.e. L(A) = {t ∈ T (F ) | t→∗A q ∧ q ∈ Q f }.

3 DESIGN

Although there are several packages that provide support for finite tree automata, their imple-
mentations are often based on explicit representation of the automaton: they work with sets of
states and sets of transitions. However, some approaches using symbolic representation appear
to be very promising. One of these approaches used in MONA [3] (a tool that implements a
MTBDD package for binary deterministic finite tree automata) uses representation of transition
relation by a multiple terminal binary decision diagram (MTBDD) [4] for each pair of states
(q1,q2) ∈ Q2 of the automaton. Input symbol f of the automaton is encoded as a binary vector
(x1, . . . ,xn) which is mapped on respective Boolean variables of the MTBDD: x1, . . . ,xn. The
leaves of the diagram are states p ∈ Q, such that ∆( f (q1,q2)) = p.

A similar method was chosen to be used in the implemented library. However, due to the
requirements placed on the library, several modifications need to be made. First, to deal with
the problem that the library needs to be able to work with symbols of arbitrary arity, we propose
a solution that instead of a pair of states uses a sequence of states of arbitrary (even 0) length
(limited by the maximum arity of a symbol from F ) which correspond to left-hand sides of
transitions in the transition table. Another requested feature is support for nondeterministic



automata, which is implemented by inserting a list of states instead of single states in the leaves
of the MTBDD. An example of such mutliple-root MTBDD is in Figure 1. A zero-length
sequence of states is denoted by Empty label and a sink non-accepting state of the automaton
by NULL (if we add a transition from NULL to NULL for each symbols, then the automaton is
complete).

The use of nondeterminism allows some optimizations. Union of two automata (i.e. construc-
tion of an automaton that accepts the language that is the union of languages of two automata)
can be constructed very efficiently by taking roots for transitions of leaves and performing an
apply operation on them such that given two MTBDDs, it concatenates both lists in respective
leaves (accessible with the same symbol).
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Figure 1: MTBDD representation of a transition relation
4 CONCLUSION

The paper proposes design of a flexible and efficient library that support work with nondeter-
ministic finite tree automata that uses symbolis representation using MTBDDs for transition
function.
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