
3D SPATIAL INDEXING OF OBJECTS

Miroslav Drbal
Master Degree Programme (2), FIT BUT

E-mail: xdrbal03@stud.fit.vutbr.cz

Supervised by: Filip Orság
E-mail: orsag@fit.vutbr.cz

ABSTRACT

This paper introduces the reader to the issue of spatial indexing of objects, also discusses differ-
ences between indexing static and moving objects in the 3D space. The main part is dedicated
to the MaNGOS’s data analyze and sketches out the implementation of the 3D spatial index
aimed to be used as replacement of the grid index[3] in open-source application MaNGOS1.

1 INTRODUCTION

At this point I would like to outline what the reader can imagine beyond the term spatial index.
The spatial index2 is a data structure created upon the set of objects which makes some oper-
ations on a key attributes more faster. For example we can consider searching for all objects
of the given properties in the certain subspace of the whole operating space3. With the non-
indexed very simple approach we have to traverse the whole collection of objects in the entire
space and check the conditions. This is very ineffective for large sets of data. And this is the
very point where the indexing structures becomes very useful.

There is also a big difference in the indexing algorithms when the character of data is static or
we have to deal with the moving objects. In fact every spatial index is based on dividing space
into the smaller subspaces and organizing them into the linked structures (mainly into the tree
structures). This indexes are very effective for searching operations upon the static data. They
are based on an idea that the subspaces have constant size in time. If we try to use this index
on the set of mainly moving objects we get very often updated index what leads to very often
subspaces rebuilding and objects reinsertioning. This causes performance degradation of the
whole index.

For more details I would like to redirect the reader to bibliography articles [3, 1, 2, 4] for more
information about the indexing structures for static data and articles[5, 6] for moving data.

1Project can be tracked on its homepage at http://www.getmangos.com
2Not only spatial but theoretically any other index.
3Find all pizza restaurants in the radius of 1km from my current position



2 MANGOS DATA ANALYSIS

MaNGOS4 is open-source application distributed under GNU/GPLv2 license. It is network
server for the MMORPG5 game World of WarcraftTM.

The game environment consists of four base continents6 and the smaller maps with dungeons.
The game objects can be divided into a three main groups: GameObjects, NPCs, Players. Each
continent map contains approximately 25000 NPCs and GameObjects.

Now let aim our attention to how this game objects are distributed in the map. The base size of
each map is 34133,33×34133,33. If we consider the point [0;0] as the center of the map we are
getting the Cartesian coordinated system with bounds from interval (−17066,665;17066,665).
The resolution of this system is given by the precision of float data type. On the picture 1 we
can see how NPC objects are flat and spatially distributed on the map 5717. Each black cross

(a) Map 571 (b) Map 571 3D

Figure 1: Flat and spatial NPCs distribution on map 571

represents one NPC object in the space. The shape of the continent is not explicitly drawn in
the picture, but can be really well guessed from the NPC density. The table 1 characterizes the
data from the side of its static or moving character in the world scale. As we can see the most
of the data can be considered as static.

Object Type Moving [%] Static [%] Count in world
GameObject 0 100 136931
NPC 22 78 139037
Player 100 0 2000
Summary 11,7 88,3 277968

Table 1: Percentage summary of moving and static objects in world scale.

3 DESIGN OF INDEXING STRUCTURE

With regard to the data analysis I decided implement the indexing structure as a hybrid combi-
nation of the R*-Tree[4] for indexing static data and the kD-Tree[2] for indexing moving data.
Each bounding box in the R*-Tree contains pointers to the kD-Tree subspaces where it belongs

4Massive Network Game Object Server
5Massive(ly)-Multiplayer Online Game
6Kalimdor, Eastern Kingdoms, Outland, Northrend
7This map number belongs to Northrend continent



to8. In the standard index application where we index a common data, there is no direct linking
between the object and the index. In the MaNGOS I would like to introduce the backpoiters
from the game objects to the R*-Tree’s bounding boxes what can improve searching perfor-
mance for the small radiuses because we don’t need to traverse whole the structure from the
root node and it can also improve performance for the middle radiuses where we can traverse
the tree from bottom up.

Implementation will be done in the C++ with use of the template classes and the meta-programming.
The leaf nodes, containing the pointers to the data, are designed as the universal data storage.
Each stored data type will have its own container transparently accessible by the indexe’s meth-
ods. This approach has few disadvantages like not trivial implementation of searching for mul-
tiple types at the same time. On the other hand there is no need to have a common predecessor
for the all indexed objects, no need to implement the object type identification on the object
level and at last no need of casting a common predecessor to a correct data type on the query
return.

4 CONCLUSION

Further testing will be needed to prove the performance increase with this new indexing struc-
ture against the default grid index. Also some minor problems will need to be solved. For
example the algorithm for classification currently active objects9.

REFERENCES

[1] Apostolos N. and Papadopoulos,Yannis Manolopoulos. Nearest neighbor search: a
database perspective. Springer Science+Bussines Media, Inc., 2005.
ISBN 0-387-22963-9.

[2] Hemant M. Kakde. Range searching using kd tree.
www.cs.fsu.edu/ lifeifei/cis5930/kdtree.pdf, 2005-08-25 [cit.
2010-01-01].

[3] Kevin Sahr, Denis White, and A. Jon Kimerling. Geodesic discrete global grid systems.
http://www.sou.edu/cs/sahr/dgg/pubs/gdggs03.pdf, 2003 [cit.
2009-12-27].

[4] Wikipedia. R*-tree. http://en.wikipedia.org/wiki/R*_tree.

[5] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The tpr*-tree: An optimized
spatio-temporal access method for predictive queries.
www.cs.ust.hk/ dimitris/PAPERS/VLDB03-TPR.pdf, [cit. 2009-01-04].

[6] Yuni Xia and Sunil Prabhakar. Q+rtree: Efficient indexing for moving object databases
[online]. www.cs.purdue.edu/homes/sunil/pub/yuniDASFAA03.pdf, [cit.
2009-01-03].

8I expect the size of the R*-Tree’s bounding box will be << to the kD-Tree’s subspace so there can be max-
imally 4 pointers in the worst case. Also bounding box creation heuristics can minimize this pointers count to
1

9Currently it is done by flagging all objects in all grids around the grid with the player as active.


