ELECTROMAGNETIC FIELD MAPPING IN BIOLOGICAL TISSUE

Martin Bereznanin

Master Degree Programme (2), FEEC BUT E-mail: xberez01@stud.feec.vutbr.cz

> Supervised by: Jiří Rozman E-mail: rozman@feec.vutbr.cz

ABSTRACT

The main objective of this study is to learn about the theory of electromagnetic field and to create a model of propagation of ultra short waves in a biological tissue. Next point of this paper is to determinate a specific absorbtion rate (SAR) using a valid sanitary standard.

1. ÚVOD

Na začátku 21. století narůstá nevídaně počet umělých zdrojů elektromagnetického pole v souvislosti s bouřlivým rozvojem informačních bezdrátových technologií. Dnes se dokonce hovoří o "bezdrátové revoluci", která činí náš život pohodlnější, ale má i svá negativa. V konečném důsledku je každý vystaven expozici elektromagnetického pole jak doma, tak i v zaměstnání a to stejnosměrným elektrickým a magnetickým polem, střídavým nízkofrekvenčním elektrickým a magnetickým polem a vysokofrekvenčním polem. Posledním jmenovaným se bude tato práce podrobněji zabývat.

2. ROZBOR

Nejprve bude provedeno obeznámení s modelovým prostředím, s jeho funkcemi a výhodami. Dále budou uvedeny parametry zdroje elektromagnetického vlnění a objektu, na který se bude tímto vlněním působit. Nakonec bude stanovena hodnota specifického absorbovaného výkonu SAR.

2.1. VOLBA VHODNÉHO MODELOVÉHO PROSTŘEDÍ

Pro tuto úlohu byl využit program Comsol Multiphysics 3.5, který umožňuje modelování a simulaci fyzikálních procesů popsaných parciálními diferenciálními rovnicemi s následným řešením metodou konečných prvků, [3]. Poskytuje intuitivní a srozumitelné 2D i 3D rozhraní. Program je rozdělen na moduly, přičemž každý modul řeší problémy z dané fyzikální domény. Použit byl modul radiofrekvenční, který obecně usnadňuje návrh systémů pracujících s elektromagnetickým vlněním. Tento je pro naši problematiku nejvhodnější.

Konkrétní modelové řešení se bude skládat ze zdroje elektromagnetického vlnění v podobě mobilního telefonu a modelu hlavy, na který bude daný zdroj působit.

Typ tkáně	Vod σ [S	ivost S/m]	Relativní permitivita ε _r [-]		Hustota ρ [kg/m³]		Specifické oteplení c _s [J/kg.K]		Tepelná vodivost k [W/m.K]	
Frekvence [MHz]	835	1900	835	1900	835	1900	835	1900	835	1900
Mozek	0.7665	1.2038	45.8055	43.3749	10)30	36	50	0.	.5
Lebka	0.2416	0.4561	16.6208	15.4651	18	350	12	56	0.	.5
Svalovina	0.9692	1.480	55.9555	54.3048	1040		3639		0.5	
Krev		-	-		1000		3639		-	

2.2. PARAMETRY TKÁNÍ A MOBILNÍHO TELEFONU

Tabulka 1:Parametry biologických tkání, [2]

Тур	Vodivost σ [S/m]		Relativní pern	nitivita ɛ _r [-]	Další parametry		
Frekvence [MHz]	Plast	Substrát	Plast	Substrát	Vstupní napětí V _{in} [V]	Impedance externího kabelu $Z_0 [\Omega]$	
835	0		2.4	5.23	54,5	75	
1900	0		2.4	5.23	54,5	50	

 Tabulka 2:
 Parametry mobilního telefonu

2.3. KONKRÉTNÍ MODELOVÉ ŘEŠENÍ

- Pro modelové řešení byl zvolen zjednodušený model lidské hlavy, který se skládá ze tří vrstev - svaloviny a lebky o tloušťce 0.5 cm. Vnitřní výplň reprezentuje vnitřní orgán - mozek. Parametry jednotlivých vrstev jsou uvedeny v tabulce 1.
- Mobilní telefon se skládá ze čtyř základních částí plastového krytu, substrátu, antény a napájení. Jeho parametry se nacházejí v tabulce 2.

Obrázek 1: Modelové řešení úlohy - hlava a mobilní telefony pro frekvence 835 a 1900 MHz

2.4. VÝSLEDKY SIMULACE

Obrázky 2 - 3: Teplotní změny tkáně - frekvence 835 a 1900 MHz

Obrázky 4 - 5: Závislost teploty na čase - frekvence 835 a 1900 MHz

Na obrázcích 2 - 3 je vyobrazen konečný stav teplotního reliéfu po uběhnutí nastaveného času 360-ti sekund stanoveného hygienickou normou. Obrázky 4 - 5 poté znázorňují teplotně časovou závislost biologické tkáně pro body s nejvýraznějšími teplotními změnami. Na ose x je vynesen čas v sekundách, na ose y teplota v Kelvinech. Pro anténu pracující na frekvenci 835 MHz byla obdržena maximální teplotní změna 0.3698 K. V případě pracovní frekvence rovné 1900 MHz dosáhla hodnota maximální teplotní změny 0.3238 K, což je téměř o půl stupně méně, než v případě předchozím.

2.5. STANOVENÍ HODNOTY SAR

Hodnota SAR byla vypočtena dosazením hodnot hustoty a konduktivity jednotlivých vrstev do vzorce (1) a to pro krychli o straně 2.13 cm a hmotnosti 10 g tkáně.

$$SAR = \frac{\sigma E_i^2}{\rho} \tag{1}$$

Frekvence	Průměrná hodnota SAR pro 10 gramů tkáně [W/kg]	Průměrná hodnota teplotní změny pro 10 gramů tkáně [K]			
835 MHz	1.9352	0.1742			
1900 MHz	0.5340	0.0722			

Tabulka 3: Průměrné hodnoty SAR a teplotních změn pro 10 gramů tkáně

V žádném z případů nebyla překročena nejvyšší přípustná hodnota 2 W/kg, [1].

3. ZÁVĚR

V této studii se podařilo vytvořit modelovou aplikaci šíření velmi krátkých vln v biologických tkáních. Na základě tohoto modelu bylo umožněno stanovit hodnoty SAR pro dané tkáně. Tyto vypočtené hodnoty byly nakonec porovnány s nejvyšší přípustnou hodnotou SAR dle nařízení vlády č. 1/2008 Sb. o ochraně zdraví před neionizujícím zářením.

LITERATURA

- [1] Nařízení vlády o ochraně zdraví před neionizujícím zářením č. 1/2008 Sb.
- [2] Z. PŠENÁKOVÁ, V. PŠENÁK: *Electromagnetic Heating of Human Tissue*. Dostupné z: http://caca.xicht.net/down.php?id=2914>, 2004
- [3] Comsol Multiphysics v3.5 user manual. Dostupné z: http://www.comsol.com/.