
USB OVER TCP/IP

Marek Vavruša
Bachelor Degree Programme, FIT BUT

E-mail: xvavru00@stud.fit.vutbr.cz

Supervised by: Zdeněk Vašíček
E-mail: vasicek@fit.vutbr.cz

ABSTRACT

USB (Universal Serial Bus) has become major peripheral bus in modern computers. However,
devices connected to the USB are usually bound to a single computer. But it is highly desir-
able to extend their functionality over heterogenous IP (Internet Protocol) networks, preferably
without any modification of existing environment. In this paper, a new method for the USB
virtualization and device sharing is presented and evaluated.

1 INTRODUCTION

Peripheral device sharing is often desirable in network environments due to a limited number of
physically available devices, mobile workplaces or a centralized network architecture. Recently,
a lot of effort has been invested into the design of a device sharing over IP networks in form of
a Linux kernel module[2]. Even though this approach supports wider variety of devices, it also
bears several drawbacks in comparison with the proposed solution such as non-multiplatform
solution, problematic kernel module installation and ad-hoc usage.

The proposed approach operates completely in userspace and provides an efficent solution for
ad-hoc device sharing with low overhead.

2 PROPOSED APPROACH

The presented method intercepts function calls to a low-level USB library and transports them
over IP network with open and lightweight version of RPC (Remote Procedure Call) protocol.
This approach ensures data integrity and type-safe data in payload. I have chosen libusb[1]
as the intercepted library for it’s wide use and compatibility, notably for FTDI-based devices,
drivers for digital cameras, security systems etc.

2.1 INTERCEPTING SHARED LIBRARY SYMBOLS

Shared libraries are loaded into memory during an executable runtime, results in reducing
executable[3] size and further conserves memory by sharing the library instance between mul-
tiple processes. The most important feature of the shared libraries is that the executable linked
against the shared library resolves imported symbols during runtime, thus allows us to intercept



symbols by preloading custom library with matching ABI (Application Binary Interface). Since
the symbol intercepting is supported on all major platforms (i.e. Linux/BSD and Windows), the
proposed approach can be used to intercept libusb function calls.

2.2 NETWORK PROTOCOL

In order to achieve the good performance and maintain protocol extensibility (unlike in USB/IP[2]),
I have designed a binary protocol, based on a subset of open ASN.1 and BER standards[4]. The
network protocol is designed as byte-order independent and, unlike USB/IP, type-safe with em-
phasis on low overhead and low parsing complexity.
Metadata size is 2 - 6 octets per encoded value (table 1).

Octets: 1 2 - 5 N
Value: Type Packed size Value data

Table 1: Encoded value definition.

The proposed protocol is capable of transporting a raw binary data, offers size packing and
automatically handles byte-order conversions in a heterogenous networks.

3 IMPLEMENTATION

The implemented library provides a C and C++ object-oriented API, both utilizing BSD sockets.

Client

HostRun

Executable

RPC

Handshake
SSH tunnelling

Call

Figure 1: Network scheme.

Client wrapper is designed to preload a custom library and run the wrapped executable.
The wrapper itself supports an optional SSH public-key authentication and data encryption.
Remote socket descriptor is passed to the executable in SHM (Shared Memory) and closed on
the executable exit. Calls to the wrapped functions are serialized by a global mutex.

Host daemon works as a multi-client RPC service with the ability to bind to the localhost
only. This way, a remote client public-key authentication is enforced. The daemon can be
extended with the custom handlers to enable rapid development for other wrapped libraries.
Incoming events are handled synchronously to prevent race conditions.



4 EXPERIMENTS

The project implementation was tested in Linux and FreeBSD, but it is easily portable to the OS
X/Darwin and Microsoft Windows. The concept of shared library symbol intercepting works
without any environment modification and it is extensible to any shared library. The proposed
network protocol is byte-order independent and supports an optional authentication and data
encryption with SSH (Secure SHell). Performance tests (table 2) proved a very low overhead,
especially in tests transferring data in larger blocks (test 4). An extra overhead in the third test
is caused by the sequential character mode transfers, multiplied by the network latency.

Probing USB Terminal Flashing FITkit Downloading digital camera
Native [s] 0.48 1.41 11.91 4.95

Over TCP/IP [s] 0.52 1.41 13.82 4.98
Overhead 8.33% 0% 16.04% 0.61%

Table 2: Performance tests (unbuffered, flushed disk cache, repeated).

5 RESULTS

I have designed a completely new approach for accessing the USB devices over IP networks and
I have also implemented a working prototype. The main advantages of the proposed approach
are: ad-hoc usage, extensible type-safe network protocol and secure connection, while keeping
very good performance. The proposed approach is naturally multiplatform and supports a wide
number of devices. Future research will be focused on working Windows and Darwin/OS X
clients, interoperability with USB/IP[2] and a protocol extension to other libraries.

Acknowledgement: This work was partially supported by the BUT FIT grant FIT-S-10-1 and
the research plan MSM0021630528.

REFERENCES

[1] Johannes Erdfelt and others.: libusb - User-space USB library (LGPL 2.1).
http://www.libusb.org

[2] Takahiro Hirofuchi , Eiji Kawai , Kazutoshi Fujikawa , Hideki Sunahara, USB/IP: a periph-
eral bus extension for device sharing over IP network.
Proceedings of the annual conference on USENIX Annual Technical Conference, p.42-42,
April 10-15, 2005, Anaheim, CA

[3] Daniel S. Myers and Adam L. Bazinet: Intercepting Arbitrary Functions on Windows,
UNIX, and Macintosh OS X Platforms
Center for Bioinformatics and Computational Biology, Institute for Advanced Computer
Studies, University of Maryland, 2004.
http://lattice.umiacs.umd.edu/files/functions_tr.pdf

[4] ASN.1 (ITU-T Rec. X.680).
http://www.itu.int/ITU-T/asn1/


