
Moving Object Detection in Video Using CUDA

Miroslav Schery
Bachelor Degree Programme (3), FIT BUT

E-mail: xscher01@stud.fit.vutbr.cz

Supervised by: Adam Herout
E-mail: herout@fit.vutbr.cz

ABSTRACT
 There are many algorithms for moving object detection, that are more or less effective.
Particle Filter algorithm performs very well in object tracking, but implementation with
really great results is problematic to run in real-time. This is an opportunity for applying
Cuda Platform. With Cuda, part of the algorithm can be run using parallel kernels on
GPU, to achieve real-time execution or even better performance.

1. Introduction
 The objective is to study and describe moving object detection algorithms in video and
explore the possibility to apply parallel execution on Cuda (Compute Unified Device
Architecture) Platform. Cuda is an invention of nVidia Company that is working on their
GPGPU (General-purpose computing on graphics processing units) graphic cards. It
enables the software developers, to access the computational power of GPU parallel
architecture. CUDA parallel computing architecture is now shipping in GeForce, ION,
Quadro, and Tesla GPUs which enables them to choose the right device for their needs.

 Millions of CUDA-enabled GPUs were sold to date and software developers, scientists
and researchers are using it in image and video processing, computational biology and
chemistry, fluid dynamics simulation, CT image reconstruction, ray tracing, and much
more. Cuda offers C and C++ interface extensions, which makes it quite easy for
programmers to get used to.

2. Analysis
 There is a decent amount of algorithms for moving object detection in video. In this
work, particle filter algorithm[1] will be implemented. Really complex particle filter can
achieve more than 90% of successful detections. Unfortunately, this tracking is usually
slower than real-time. A lot of CPU versions offer several options for modifying the
object detection method, which are slowing down the computation. For implementation of
particle filter on Cuda, this work will focus on creating basic algorithm, to find out what
performance improvement is possible to gain by running it in parallel. After that, some
upgrades to the method of object detection itself will be included, to make previous basic
implementation comparable with complex CPU versions.
 Cuda is designed for applying arithmetic operations on large data sets (such as
matrices, images), where the same operation can be performed across thousands of
elements at the same time. This algorithm is therefore suitable for Cuda architecture.

2.1. Particle Filter
 Particle filter generates a set of samples that are uniformly displaced around last (or
predicted) position of tracked object. These samples are called particles and each particle
is weighted by a weighting function. An example of weighting function is a sum of
squared values of corresponding pixel difference or a difference between histograms. The
new occurrence of tracked object is a particle with the weight corresponding to the best
match between particle and object sample.
 The amount of the generated particles should be modified to find a compromise
between performance and satisfying tracking results. The more particles are used, the
better results are received, but also with performance degradation.

2.2. Cuda Architecture
 Cuda program is running on graphic card and is controlled by the CPU. The processor
is unable to access the memory on GPU directly and vice versa. The communication
between them is provided by Cuda functions. Because of that, the data needs to be copied
to GPU for processing and then back to system memory.
 The program contains one or more kernels. A kernel is a function callable from the
host and executed on the GPU simultaneously by many threads in parallel. In each kernel
call a thread/block configuration needs to be specified for effective distribution of work
between threads.
 Cuda offers many types of memory[2], each has its own positives and negatives.
Global memory (ram installed on GPU) has big capacity but access time is really long so
its utilization should be minimal. Each multiprocessor has its own 16kB of shared
memory, which isn't much, but in right conditions it could reach the speed of registers.
Registers are the fastest. Finally we have texture and constants memory. Their advantage
is caching.

2.3. Cuda Implementation
 The main objective was to implement particle filter algorithm, which would be capable
of tracking in real-time or even faster. The program is developed and tested on a notebook
with GeForce 9600M GT and Intel Core2Duo 2,5GHz processor. The tests of kernel
configurations were also run on desktop configuration with GeForce GTX 285. The
notebook GPU has 32 Cuda cores (For a comparison GeForce GTX 285 has 240 Cuda
cores), which means it has only 4 multiprocessors. The first implementation without
optimizations took about 110ms for one frame on notebook (10ms on GTX 285). As a
test, an object with 122x92 pixels is tracked across 435 frames using 500 particles.

2.4. Program optimization
 In a kernel function call, a block and thread configuration is required. It has a strong
influence on kernel performance. To this date, each multiprocessor is capable of executing
kernel function over one block with 512 threads maximum or multiple blocks with 786
threads altogether.
 The time results of various kernel configurations are in the Table 1. The kernel with
512 threads was fastest on the notebook, but on desktop it was kernel with 256 threads per
block. This is caused by different compute capability of these devices.
 To bypass the necessity for data transfer back to system RAM for results display,
OpenGL is used to display it from the GPU memory. Access to the global memory from

the kernel is time expensive therefore a shared memory should be used. This memory is
used for storing loaded data of an object sample, particle data from latest video frame and
for results. Loading data from texture memory helps because it is cached and the
algorithm loads data within quite small area of the frame.

Threads per block 8 512 256 384

Specifications

no
optimization

no
optimization

shared
memory

shared
memory,
texture
memory

shared
memory

shared
memory,
texture
memory

shared
memory

GeForce 9600M GT
(ms) 110,15 84,7 36,45 33,38 37,57 40,95 44,44
GeForce GTX 285
(ms) 9,8 6,11 3,17 3,1 3,06 2,981 3,15
Table 1) - Time results of various kernel configurations

2.5. Other future optimization methods
 Particle filter algorithm requires pseudorandom number generating, which can't be
done in parallel, so it's computed on CPU. While the CPU is working, GPU is idle. It
would be useful to optimize the program, so that CPU and GPU are working in parallel.
 Another time saving optimization could be asynchronous data transfer between system
an GPU memory.

3. Conclusion
 In the case of computer vision algorithms, which are mostly graphics processing,
parallelization offers an easy performance boost. After some kernel rewritings, this kernel
achieved real-time video processing even on the notebook graphic card. Thanks to optimal
work distribution to threads and blocks, a massive amount of image data is processed in
every moment in each multiprocessor and with using shared and texture memory,
expensive accesses to global memory were reduced to minimum.
 For algorithm that can be parallelized, using cuda is good decision. A lot of research
and medical programs are using it and they are achieving a great performance. Cuda isn't
just an experiment that would be forgotten, this project surely got future ahead.

Acknowledgement: This work was partially supported by the BUT FIT grant FIT-S-10-2
and the research plan MSM0021630528.

REFERENCES

[1] Musa, Z.B., Watada, J.: Motion Tracking Using Particle Filter, In:
Knowledge-Based Intelligent Information and Engineering Systems, Volume
5179/2008, Heidelberg, 2008, (s. 119 - 126)

[2] NVIDIA Corporation, Programming Guide Version 2.3.1, Santa Clara,
California, USA

