REGULATED PUSHDOWN AUTOMATA REVISITED

Lukas Rychnovsky
Doctoral Degree Programme (3), FIT BUT
E-mail: rychnov @fit.vutbr.cz

Supervised by: Alexander Meduna

E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper demonstrates the alternative proof for the theorem of equivalence between regulated
pushdown automata and recursive enumerable languages as shown in [Med-00].

1 INTRODUCTION

When developing some applications of formal languages it is necessary to understand proofs in
their construct way. For this purpose, we demonstrate constructive alternative of the proof that
a regulated pushdown automaton is equivalent to a Turing machine from [Med—-00].

2 DEFINITIONS

Definition 2.1. A extended pushdown automaton (PDA for short) is a rewriting system, usually
noted as a 7-tuple T = (Q,X,Q,8,s,V,F), where Q is a finite set of states, L is a finite set
of the input alphabet, Q is a finite set of the stack alphabet, O is a finite transition relation
(Zu{e}) x Ox Q) — O x QF, s € Qis the start state, V € Q is the initial stack symbol and F
C Q is a set of final states.

A configuration of the pushdown automaton is a triple (q,w,Y), where q € Q is the current state,
w € X* are non read characters and y € Q* are symbols on the stack.

A computational step of pushdown automaton is a binary relation -1 (or simply = if no confu-
sion can arise) defined as

(q1,aw,ZY) 1 (q2,w, YY) < 0(q1,a,Z) = (92,7).

In the previously defined manner, we extend - to F", where n > 0, =" and -*.

LetT =(Q,2,Q,98,s,V,F).
The language accepted by pushdown automaton 7 by final state is

L(T) ={w [w € X%, (s,w, V) T (qF,&,Y),qr € F,Y€Q7}
The language accepted by pushdown automaton 7" by empty pushdown is

L(T)={w|we X" (swV)Fr (¢,8,8),q € O}

Definition 2.2. Let M = (Q,X,Q,8,5,V,F) be a PDA and let x,x' , X" € Q*,y.y .y € ¥, q, ¢,
q" € Q,and Vxqy = Vx'qy =VX"q"y' . If |x| < |¥| and |X'| > |x"|, then VX'¢'y' = Vx"q"y" is a
turn. If M makes no more than one turn during any sequence of moves starting from an initial
configuration, then M is said to be one-turn (OTSA).

Definition 2.3. Let G = (V, P) be a rewriting system. Let ¥ be an alphabet of rule labels such
that card(¥Y) = card(P), and \y be a bijection from P to Y. For simplicity, to express that \y maps
a rule, u — v € P, to p, where p € ¥, we write p.u — v € P; in other words, p.u — v means
Y(u—v)=p.

Ifu—véePandx,y € V¥ then xuy = xvy [u — v| or simply xuy = xvy [p|. Let there exists
a sequence xo,X1,...,x, € V* for some n > 1 such that x;_; = x; [pi], where p; € ¥, for i =
1,...,n. Then G rewrites xo to x, in n steps according to pi,...,Pn Symbolically written as
X0 ="x, [pl e pn]

Let E be a control language over ¥, that is & € W*.
Definition 2.4. Let T = (Q,X,Q,3,s,V,F) be a PDA and let ¥ be an alphabet of rule labels

and let = be a control language. A language generated by pushdown automaton 7 regulated by
control language E is

L(T,E)={w|weX" (s,wm,V) 7 (qr,&Y) [P1---Pn),P1,---,Pn € E,qr € F,y€ Q" }.

If it is useful to distinguish, T defines the following types of accepted languages:
1. L(T,E,1) = L(T,E) — the language accepted by the final state.
2. L(T,E,2) — the language accepted by an empty pushdown.
3. L(T,E,3) — the language accepted by the final state and an empty pushdown.

Definition 2.5. A type-0 grammar G = (N, T, P,S) is in Penttonen normal form if every produc-
tion p € P has one of these forms

1.CB— CD

2.D— BC

3.C—c

4.C—¢

RESULT

Theorem 3.1. Any recursive enumerable language L can be generated as L = L(M,L;,3)
where M is an OTSA and Ly is a linear language.

Proof. Let L be any recursive enumerable language so that L = £(G) where G = (N, T,P,S) is
type-0 grammar in Penttonen normal form. Let M = (Q,X,Q,9,s,V,F) be an OTSA, where

I. 0= {%qm;qgut},
2. X2=T,

3. Q=TUNU{#}U{V}, where # ¢ {NUT},

4. s=gq,

5. V € Qs the initial stack symbol

6. F = {q()m‘}'

7. 8=08'Ud;, Uy, where
& ={(a).aqg — qa | for every a € T} U{{#).q — qin#},
Oin = {(A).qin — qinA | forevery A € TUN U {#}} U{(2).qin — Gou }»

Sour = {{A)-qowrA — qour | for every A € TUN U {#}}.
A control language L1, which is linear, is defined by the following grammar G| = (N, Ty, Py, S;):

1. Ny ={Si,K,M,M',0},

2. T1 ={{A),(A) |A € TUN U{#} and (A) is label from ¥} U {(2)},

3. =P, UP<#> UP,UP.UP, UPEUPEUPe UPfUPg U P, UP<2>, where
P,={S1 — (a)S; | foreverya € T},
Py = {S1 — (#)K},
P, ={K — (A)K(A) | for every A € TUN},
P.={K — (C)M(C) | for every rule in the form CB — CD € P},
Py ={M — (B)O(D) | for every rule in the form CB — CD € P},
P-={K — (D)M'{(C) | for every rule in the form D — BC € P},
P;={M’ — O(B) | for every rule in the form D — BC € P},
P, = {K — (C)O(c) | for every rule in the form C — ¢ € P},
Pr={K — (C)O | for every rule in the form C — € € P},
P, ={0 — (A)O(A) | forevery A € T UN},

Now, we prove two standard inclusions. First, L C £(M,L;). For every w € L there exists some
successful derivation S = wg = w; = ... = w, = w in L. We will construct the control string
R as follows (for the sake of simplicity we omit (and) if no confusion can arise)

R = whw,_i# .. #w #SHQ)HSHWRE . #wR #wR.

It is easy to verify, that OTSA M under regulation of R reaches the final state and empties its
pushdown (because R = R'(2)rev(R')).

We need to prove that R € L(G1). For every R;:
Ro=wHK

R = wiw,_1# K #wR.

Rm = W#anl#. . .#anm K #Wﬁf(mfl)

#.. .#wﬁfl#wR.
holds §; =* R; by induction on i.
i=0: 8, =" wS; = w# K, hence w#K € L(G)).

i=k:

Ry = whwy,_1#.. Hw,_ K #wl # . #wR R,

(k=1)

That is, K =" w,_ 1) O wf_k = Wy)# K #ws_k by using rules from P, to elements not
affected in the rewriting of w,,_¢ to w,_441. Then one or two rules from sets P, Py, P, P;, P,
and Py are used according to used rule from P. The rest rules are taken from P, and finally one
rule from P, rewrites nonterminal O to K.

R =" whw, i #. #w, i #w,_) # K #wfik#wf_(k_l)#. SR HWR =Ry

Let us see a short example. For the sake of simplicity we again omit (and) if no confu-

sion can arise. The derivation § = AX = ABC = aBC = aDC = aDc = abc in grammar
=({S,A,B,C,X},{a,b,c},S,{S— AX,X — BC,BC — DC,A — a,D — b,C — c}) results in

abct#taDc#aDC#aBCH#ABCHAX #S#(2) #S#X A#CBA#CBa#CDatcDattcba as the control string.

The underlying OTSA under such derivation string operates as follows:
a.aq — qa: (abc,q,V) & (be,q,a)

b.bqg — gb : (bc,q,a) & (c,q,ab)

c.cq — qc: (c,q,ab) - (g,q,abc)

#.9 — qin#: (€,q,abc) - (€,qin, abc#)

a.qin — qina@ : (€,qin,abc#) &= (€, qin, abc#a)

D.qin — qinD : (€,qin,abctta) &= (€,qin,abc#aD)

C.qin — qGinC : (€,qin,abc#aD) & (€, qin, abct#aDc)

#.qin — qin#t : (€,qin,abc#aDc) & (€, qin, abc#taDc#)

S.qin — qinS : (€,qin, abc#taDc#aDC#aBCHABCHAX #) -

t (€, qin, abc#taDc#aDC#aBCHABCHAX#S)

#.qin — qintt : (€, qin, abcttaDc#aDCHaBCHABCHAX#S) -

t (€, gin, abc#taDc#taDC#aBCHABCHAX #S#)

2).qin — qour#t : (€,qin, abc#taDc#taDCH#aBCHABCHAX#S#) -
(€, Gour , abcttaDc#taDCHaBCHABCHAX #S#)

Gourt — Gour : (€, Gour,abcttaDctaDCHaBCHABCHAX #S#) -
(€, Gour, abc#taDc#aDC#aBCHABCHAX#S)

outS — Gour * (€, Gour,abcttaDc#aDCHaBCHABCHAX#S) F
(8 Gour,abcttaDc#aDCHaBCHABCHAX#)

—~

T wl T 3T
Q

qom# — Gour * (€ Gour,abc#) F (€, qour, abc)
C-Gour¢ = Gour * (& Gour,abc) = (€, o, ab)
b-Qoutb — Yout - (8 QOutvab) (87QOut7a)

a.qour@ — Gour - (87QOut7) - (87QOutav)
so OTSA is in final state and has empty stack.

The derivation of control string in control language is

S1 = aS| = abS| = abcS| = abc#K = abc#aKa D££ abc#aD O ba =

= abc#aDc O cba = abc#aDc# K #cha = ... =
= abc#aDc#aDCHaBCHABCHAX#S# K #X A#CBA#CBa#CDa#cDa#cba =
= abc#aDc#aDC#aBCHABCHAX#S#(2)#S#X A#CBA#CBa#CDattcDattcba.

The second inclusion is £L(M,L;) C L. Let us suppose that the word w,,, = x1x2...x, € L(M,Ly).
We will prove the following theorem by induction on 7n:
For any integer n, the word w;,,_,,1 < n < m in the control string R,

Ro=wn# K

Ry = wy#twy,_1# K #wR

Ry = wydtwy_1# .. Hwy, o # K #wR #o #wR HwR

(n—1)
can be derived from w,,_, to wy, in n steps in G, hence wy,_,, =" wy, in G.
n=0: wp ="w,.

n=k:

R =Wy #wy i # K#wR # . #wh

(k=1)
Wi—k = Y1y2...Yq. As M is OTSA, the sequence of pushed symbols onto the stack will be
popped in reverse order. Hence,

K="z1220...2# K #y,...y:20
where z; € (NUT) and there exists index i such as y; = zj,...,y; = z; and
K="yi1y...y: K yi- o)1,

according to 7 applications of rules from P,. Now there are 4 possible rules to apply P, Pz, P,
and Py. The next step has to generate y; ;1 on the right side of K.

1. .:K=CMC=CBODC < CB—CDEcPandyj»=Dandy, | =C.
2. P K=DM C=DOBC<D—BCcPandy;,»=Bandy; | =C.
3. P, K=COc&sC—cePandyj | =c.

4. P K=CO < C—ecP.

Now there are two possible rules to apply. From P, and Py,. As there are still some elements of y;
on the right side of O, we have to use rules from P, until there is complete y,...y2y; generated
on the right side of O. Consequently, there exists index j such that y; = z,...,y, = z,. Then,
the last rule from P, generates # and # on both sides of O and O rewrites to K. Then,

R =" witt . #Wy_i#w,,_i1) K #wﬁ_k#wﬁi(kil)#. CHWR =Ry

and wy,_x = Win—(k+1) in G.

So, the complete control string will be

R = wyttwy_1# .. #w #SHQ)#SHWRHE . HwR #HwR

and there exists the derivation S = w; = ... = w,_| = w, in G and w, € L = L(G). L]

REFERENCES

[Med-00] Meduna, A., Kolaf, D.: Regulated Pushdown Automata, Acta Cybernetica, Vol. 14,
2000. 653-664.

