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ABSTRACT

This paper deals with one of the advanced contgirithms — Generalized Predictive
Control (GPC), which is one of the most popular mods of Model Predictive Control
(MPC). This control algorithm optimizes control iact and output error within a time ho-
rizon and can be successfully used to control systeith limited inputs and outputs. A
neural network system model is used for predictibfuture system behavior. The control
algorithm was implemented in the simulation envinemt MATLAB/Simulink and tested

on mathematical and physical models.

1. INTRODUCTION

The beginnings of Model Predictive Control (MPCjedback to the 1970s. Model Predic-
tive Control integrates optimal control, dead tiprecesses control, multivariable control
and future references when available. The MPC tsanspecific control strategy but an

ample range of control methods where the contgsiadiis obtained by minimizing an ob-

jective function. The model is the cornerstonehaf MPC wherefore it is necessary to ob-
tain the best possible model, and that can be dgmsing Neural Network (NN).

Model Predictive Control algorithms usually assuthat all signals have an unlimited
range, although real processes have constraimtsited range of action, limited action in-
crement, constrained output, etc. For this reasos,necessary to use generalized predic-
tive controllers to cope with constrained inputsditude and increment).

2. GENERALIZED PREDICTIVE CONTROL

Generalized Predictive Control (GPC) is one of thast popular methods of predictive
control. It was proposed in 1987 [2] and has become of the most popular MPC meth-
ods [1] inboth industry and academia. The generalized piedicontrol algorithm con-
sists in applying a control sequence that minimeesst function (1).
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where 9(t + ] |t) is the predicted system outpatthej-th prediction step in discrete time
w(t + j) is the reference trajectorpul(t + j) is thej-th increment of control action, P is

the predicted horizon, M is the control horizoh,is the cost constant ambis delay. The
first term considers the predicted error and tlo®sé term considers penalized future con-
trol increments.

The criterion (1) can be rewritten to a matrix foj
J)=(Gu+f-w) (Gu+f-w)+Am"u 2)

wheref is the vector of the free response of a sysbanthe prediction horizomw is the
vector of future references.
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where elemeny; is j-th coefficient of model step response (3).
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The cost function minimum (2) is obtained by makihg gradient ol equal to zero [1].
The result is equation (4), which is used for cotapan ofthe future control action in-
crements vector.

u=(GTG+A)'GT(w-9) )
Au(t) =k (w-y) (5)

Wherek is the first row of the matri>(GTG + Al )_1GT . Only the first increment of control
action is used for control (5).

2.1. CONSTRAINTS | MPLEMENTATION

The GPC, which was described previously, consitlesignals have an unlimited range,
but this is not realistic because in practice aticesses have constraints. A control action
increment limits can be described by equation



Au., <u(t)-u(t-1) <Au,,,

(6)

and control action amplitude limits can be desatibg equation
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Now, an optimization problem with a quadratic clstction (1) and linear constraints (6)
and (7) can be solved by Quadratic Programming .(QRg criterion (1) has to be rewrit-

ten to equation

Q) =%UTHu +bTu+f, (8)
where
H=2(G'G+Al)
b =2(f -w)'G
fo=(f—w) (f -w)
And the constraints (6) and (7) can be rewritten to
Au<c (9)
Where
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Wherel is the identity matrix and is the low triangular matrix as is shown in negua-
tions.
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3. APPLICATION OF CONSTRAINED AND UNCONSTRAINED GPC

Both GPC algorithms were written in MATLAB and theodel was obtained by using a
neural network with the Levenberg-Marquardt tragnadgorithm. To test of the control
algorithm on a physical model, real-time communaratis used between MAT-
LAB/Simulink and PLC is via Ethernet using a comneation client. The analog model,
which contains operational amplifiers, resistorsl @apacitors, represents the third order
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Fig. 1: Comparison of Constrained and Unconstrained GPC
Criterion \ controller Constrained GPC UnconstrdiGPC
co = . (y(t) - wit))® 1.85 2.05
ce = > (uft)? 121 119
co = (Au(t))® 0.134 0.135

Tab. 1: Quality of regulation Constrained and UnconstrdiG#C.

Fig. 1 shows a comparison of constrained and unconsttaBfeC. The GPC parameters

were P=20,

M=10, A=05 and the control

action increment constraint



(Au,,, < 005,Au,,, =-005) and control action amplitude constraintg, ( < )ld&e

max

applied to both GPC outputs.

In the first case, the unconstrained GPC was coadpanalytically by using equation (4)
and after that its output™u(t) , u(t)) was limited. On the contrary, constrained GPG-opt
mizes the cost function (8) with constraints (9heTproblem of quadratic programming
solved MATLAB functionquadprog.

4. CONCLUSION

This paper shows the comparison of constraineduacdnstrained Generalized Predictive
Control. This comparison is shown on an analog rhadd the control action increment
constraint and control action amplitude constraamésapplied to both GPC outputs.

The comparison of both GPCs is showrFig. 1, and quality of regulation is compared in
Tab. 1. The responses show the main advantage of camstr&PC - optimizing control
actions with respect to actuator and/or procesgdifthe control actions increment and the
control action amplitude were constrained). Su€P&L controller can track the reference
trajectory better, and its quadratic output ernotedon (Tab. 1) is about 20% lower in
comparison with the unconstrained GPC.

GPC is an effective tool for the control of manypgesses such as processes with input,
output or state constraints, processes with dedagsprocesses with known reference tra-
jectory as well.
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