
OPEN INVENTOR EXTENSIONS

Jaroslav Přibyl
Doctoral Degree Programme, FIT BUT

E-mail: pribyl@fit.vutbr.cz

Jan Pečiva
Doctoral Degree Programme, FIT BUT

E-mail: peciva@fit.vutbr.cz

Supervised by: Pavel Zemčík
E-mail: zemcik@fit.vutbr.cz

ABSTRACT

This paper presents Open Inventor extensions for working with offline divided models

over a network. There are in fact two extensions. The first one adds a functionality for

downloading models and textures from a network. There is allowed a non blocking texture

and model downloading. The second one extension adds a functionality for maintain level

of detail for downloaded textures. The main purpose for maintain level of detail for

textures is in saving maximum free memory. Open inventor is object oriented library for

interactive working with 3D grapics and is based on synchronous scene graph traversal. On

the other hand these two extensions is asynchronous. We also present a possibilities to

synchronize these extensions and the scene graph traversal.

1. INTRODUCTION

The main motivation for extending the Open Inventor library was system for interactive

examining large models stored on network server. We decided to use The Open Inventor

library and then design its extensions. The design of these two extensions is strongly

affected by the Open Inventor library design and principles. The system should have to be

small and flexible. It means that the system should visualize data with achieving maximal

interactivity.

The system download all needed data from network. Data downloading and textures

downloading was designed as a non blocking process. This is the first extension. The

second extension maintains level of detail for textures. The reason for implementing that

feature is to minimalize used memory . Concurrently we want achieve maximal detail in

visible part of the scene. Because we want to achieve more free memory, we have to store

some texture on disk instead on memory. This feature unfortunately disagree with

interactivity requirements.

2. DOWNLOAD MANAGER

The download manager will be used only for downloading models and textures. Our

objective subsists on implementing the manager and synchronize it with the scene graph

traversal.

2.1. BASIC CONCEPT

We have to decide how to hook up the whole download process into scene graph. There

are at least two possibilities how to do it. First we can create new node with ability to

download files. This node will process all requests from all his children nodes. Second we

can create global download manager. So all nodes in scene graph send requests to this

global manager. Compared with the first method, there we get control over all requests and

we can better manage priorities of the requests with the second method.

We decided to implement the second method to take global care of downloading models

and textures. It is much more easier to implement and it is without disadvantages compared

to the first one method. The download manager simply receives download requests from

all nodes and places them to a priority queue.

Figure 1: Each download manager

DM cares about his children nodes.

Figure 2: There are one download

manager for all nodes in the scene graph.

2.2. JOIN WITH OPEN INVENTOR

As we said, there are the download thread and the priority queue, which takes care of the

nodes‘s requests. This priority queue takes the highest priority request (queue head item)

and download them using a download thread. After a model or texture is downloaded, the

download manager calls the request‘s source node callback. This callback function notify

the scene graph for redraw or rebuild.

The download process (thread) take only a minor processor time, so there are no

performance issue concering to a frame rate. The node‘s download requests can be in a non

blocking fashion, because the download thread.

3. LEVEL OF DETAIL FOR TEXTURES

There it is assumpted that we will use large models with a number of large textures. It

means we will use textures on high resolution e.g. 2048 or 4096 pixels. On todays

hardware there aren‘t possible to load all these texture data (many shapes => many hi-res

textures) into memory. So we decided to use level of detail for textures. This feature allow

us to save a lot of free memory space along with achieve maximal detail in user‘s view

frustrum.

3.1. BASIC CONCEPT

We have to decide how to select the appropriate level of detail for texture. The simplest

way how to do it is in accordance to distance between the viewer and the given shape

(texture). But as you know doing only this is in fact a bad way. The better solution is based

on mapping coordinates from screen space into model space, see figure 3. and figure 4.

Figure 3: By projecting of two adjacent

points from screen space to model space we

can determine an apropriate resolution.

Figure 4: The two adjacent points from

screen space are projected on plane in model

space.

The nearest point‘s plane is parallel to projection plane and distance from projection point

is defined by distance from projection point to the bounding box nearest‘s point. It means

that texture level change only with varying distances and has same level in centrical

circles. We compute the appropriate level of detail only by dividing the d2 and the d1

distance. We can multiply the viewport resolution by this division and get a new resolution

which should be used. Well, we need to know input resolution of all textures, because right

select the appropriate level according newly computed resolution. All what we need to

know is input resolutions, no distance and no more additional informations.

3.2. JOIN WITH OPEN INVENTOR

At now we know how to select level of detail for textures. But this is only first step for

success. We have to made the second step too. The second step rests in joining the texture

level of detail technique with Open Inventor.

Texture switching can be divided into two separate problems. First we have to load texture

from disk (generally from external source) and if it isn‘t a raw data, we should decompress

it too. Second we have to bind the texture into opengl, create mipmaps etc. We also

implement a separate loading thread for texture reading from disk and to decompressing it.

Settings up the texture parametres, binding the texture or generating mipmaps can be done

by the main redering loop (thread). So after the loading thread prepare texture data, it‘ll use

a callback to invalidate the present texture data. This can be done simply by setting the

texture invalidate flag in Open Inventor. For large textures we unfortunately met a

performance issue (framerate fluctuating during any smoot animation e.g. model rotation).

In next chapter we will discuss how to reduce this annoyingly framerate fluctuating.

4. DATA STREAMING

As we said, for large textures we met a performance issue. There are two problematic

places in texture switching process. First is the loading/decompressing process and second

is binding the texture into opengl which is done in the main rendering thread. We made

some measurement and found out that binding large textures into opengl is much time

consuming operation. So more info about data streaming you can found at [2].

10 100 1000 10000

0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25

27,5

30

fast_mipmap

GL_SGIS_generate_
mipmap

no mipmaps

resolution
(32..4096)

b
in

d
 t
im

e
 [
m

s
]

Figure 5: Texture binding into opengl

measurement from 32 to 4096 resolution.

Table 1: This table shows realation

between texture resolution and texture

creating/binding time.

Well, we had examined a several methods how to avoid the frame rate fluctuating. First we

have to be able to load and decompres texture from disk to memory without affect the

framerate. It can be done using a loading (streaming) thread. There are at least three ways

how to implement such a thread, see figure 6.-8.

Figure 6: Actually we

use this method. This method

slightly affect the framerate.

Figure 7: This method

don‘t affect framerate, but we

face up deadlocks (can be

eliminated) and other issues.

And this is not well designed

solution too.

Figure 8: This is a best

concept, but practically it is

offen hard to optimize the

workload for the loading

thread.

So lets assume that the loading thread don‘t affect the interactivity (frame rate). If you look

back on table 1. you will see that binding texture at 2048 or higher resolution into opengl is

a time consuming operation. We uncovered, that working with resolution less or equal

1024 pixels didn‘t affect interactivity. But resolutions higher than 1024 is an issue.

5. BINDING LARGE TEXTURES

Binding large textures (greater than 1024) into opengl is time consuming operation. If you

would save more free memory, you have to work with texture binding into opengl (no

other way). It looks like a insolvable problem, but there are at least three approach how to

attenuate the necessary binding time.

The first approach is based on binding texture into opengl per part using glTexSubImage2d

function. This sounds like a good idea, but it is much more complicated to realize in Open

Inventor. We would have to separate the image data and add a state flag into texture image

class, which will specify the texture load status. As soon as the texture is loaded and whole

binded into opengl, we can use it. For this approcah we made a simple demo and we

should make a hard testing in near future.

The second approcah is based on second rendering thread. This second thread has its own

rendering context. We are able to create a texture object in this second rendering thread

and share this texture object with the main rendering context used in main rendering loop.

As well as in first approach we made only testing application and next we should make a

hard testing this method in near future.

The thirdth approach stands for reusing preexisting texture objects (opengl term). If we

think that we have e.g. four texture objects on 2048 resolution permanently created and we

only change the texture data, it would rapidly increase preformance, because we can only

render to texture (direct to graphics hardware or this objects). With creating texture objects

for small textures there is no performance issue.

6. CONCLUSION

As you can see, creating system for working with large textures is very difficult task. As

far as you have to achieve interactivity, it becomes almost unsolvable. But there exists

some avenues of approach how to partially solve this task. An alternative approach consist

in taking a think how to making the high resolution textures away. Is there possible to

divide the 4096 texture into four parts each at 2048 resolution or into eight parts each at

1024 resolution? It might be a better way.

REFERENCES

[1] Wernecke J., Open Inventor Architecture Group, The Inventor Toolmaker:

Extending Open Inventor, Brno, Addison-Wesley, 1994, ISBN 02-01624-93-1

[2] Stuart Denman, Highly Detailed Continuous Worlds: Streaming Game Resources

from Slow Media, GDC, 2003

[3] Anders Brodersen, Real-time Visualization of Large Textured Terrains, University of

Aarhus

[4] Borgeat L., Godin, G., Blais, F., Massicotte, P., Lahanier, C., GoLD: Interactive

Display of Huge Colored and Textured Models, Proceedings of ACM SIGGRAPH

2005

