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ABSTRACT

This article presents some ideas from parsing Context-Sensitive languages. Introduces Scattered-
Context grammars and languages and describes usage of such grammars to parse CS languages.
The main goal of this article is to present results from type checking using CS parsing.

1 INTRODUCTION

This work results from [Kol–04] where relationship between regulated pushdown automata
(RPDA) and Turing machines is discussed. We are particulary interested in algorithms which
may be used to obtain RPDAs from equivalent Turing machines. Such interest arises purely
from practical reasons because RPDAs provide easier implementation techniques for prob-
lems where Turing machines are naturally used. As a representant of such problems we study
context-sensitive extensions of programming language grammars which are usually context-
free. By introducing context-sensitive syntax analysis into the source code parsing process a
whole class of new problems may be solved at this stage of a compiler. Namely issues with
correct variable definitions, type checking etc.

2 SCATTERED CONTEXT GRAMMARS

Definition 2.1 A scattered context grammar (SCG) G is a quadruple (V,T,P,S), where V is a
finite set of symbols, T ⊂V , S ∈V\T , and P is a set of production rules of the form

(A1, . . . ,An)→ (w1, . . . ,wn),n ≥ 1,∀Ai : Ai ∈V\T,∀wi : wi ∈V ∗

Definition 2.2 Let G = (V,T,P,S) be a SCG. Let (A1, ...,An)→ (w1, ...,wn)∈P. Then we define
a derivation relation ⇒ as follows: for 1 ≤ i ≤ n+1 let xi ∈V ∗. Then

x1A1x2A2...xnAnxn+1 ⇒ x1w1x2w2...xnwnxn+1

⇒∗ is reflexive, transitive closure of ⇒.
Language generated by the grammar G is defined as L(G) = {w ∈ T ∗|S ⇒∗ w}.



Theorem 2.1 Let Ln(SC) be the family of languages generated by SC grammars whose number
of productions that contains two or more context-free productions (degree of context sensitivity)
is n or less. L(RE) denotes the family of recursively enumerable languages.

L2(SC) = L∞(SC) = L(RE)

Proof: See [Med–03] Lemma 1 and Theorem 3.

3 PARSING OF CONTEXT-SENSITIVE LANGUAGES

The main goal of regulated formal systems is to extend abilities from standard CF LL-parsing
to CS or RE families with preservation of ease of parsing.
In [Kol–04] and [Rych–05] we can find some basic facts from theory of regulated pushdown
automata (RPDA). We figured that regulated pushdown automata can in some cases simulate
Turing machines so we could use this theory for constructing parsers for context-sensitive lan-
guages or even type-0 languages.
From [Rych–05] it is obvious that converting Turing machine to corresponding RPDA is very
complex task. Even simple Turing machine (20 states, 10 symbols) can result in many (thou-
sands) rules in RPDA.
Therefore, we are looking for another way to parse context-sensitive languages. We would
like to extend some context-free grammar of any common programming language (such as
Pascal, C/C# or Java). After extending context-free grammar to corresponding context-sensitive
grammar, parsing should be straightforward.

3.1 KONTEXT-ZAP03

As an example of a context-free language we use a language called ZAP03 [ZAP–03] which
has very similar syntax to Pascal. We will use following program as an example program in
ZAP03 language.
int : a, b, c, d;
string : s;

begin
a = 1;
b = 2;
c = 10;
d = 15;
s = “foo”;
a = c;

end
Now we will define Kontext-ZAP03, the context-sensitive extension of ZAP03. In the first
phase we will enrich Kontext-ZAP03 by variable checking. If the variable is undefined or
assigned before initialized, the parser of Kontext-ZAP03 will finish in error state. We will need
to analyze three fragments of ZAP03 code where variables are used (variable c for example).
Variable definition
int : a, b, c, d;
Assignment statement



c = 10;
And using variables in commands
a = c;
Corresponding grammar fragments from ZAP03 are following.
Variable definition
DCL→ TYPE [:] [id] ID_LIST
ID_LIST→ [,] [id] ID_LIST
ID_LIST→ ε

Fragment of assignment statement
COMMAND→ [id] CMD COMMAND
CMD→ [=] STMT [;]
And usage variable in command
STMT→ [id] OPER
OPER→ ε.
Symbols in brackets [,] are terminals. Complete ZAP03 grammar has about 70 context-free
grammar rules.
We define grammar of language Kontext-ZAP03 in the following way. Substitute previous rules
with these scattered-context ones:
(DCL, S’)→ (TYPE [:] [id] ID_LIST, D)
(ID_LIST, S’)→ ([,] [id] ID_LIST, D)
(ID_LIST)→ (ε)
assignment statement
(COMMAND, D)→ ([id] CMD COMMAND, DL)
(CMD)→ ([=] STMT [;])
and usage variable in command
(STMT, D)→ ([id] OPER, DR)
(OPER)→ (ε).

Parsing now proceeds in the following way: starting symbol is S S’ and derivation will go as
usual until there is DCL S’ processed and (DCL, S’)→ (TYPE [:] [id] ID_LIST,
D) rule is to applied. At this moment S’ is rewritten to D indicating that variable [id] is defined.
When variable [id] is used on left resp. right side of assignment D is rewritten to DL resp. DR
according to second resp. third previously shown fragment. If variable [id] is used without
being defined beforehand, a parse error occurs because S’ is not rewritten to D and S’ cannot
be rewritten to DL or DR directly. When the input is parsed S is rewritten to program code and
during LL parsing is popped out of the stack. S’ is rewritten onto D{LR}∗ and this is only
string that remains.
(S,S’)⇒∗ (DCL,S’)⇒ (TYPE [:] [id] ID_LIST,D)⇒∗ (COMMAND,D)⇒

⇒ ([id] CMD COMMAND,DL)⇒∗ (ε,DL)

If the only remaining symbol is D, it means that variable [id] was defined but never used. If
DL+ is the only remaining symbol, we know that variable [id] was defined and used only on
the left sides of assignments. Finally if there is the only remaining DR(LR)∗, we know that the
first occurrence of variable [id] is on the right side of an assignment statement and therefore it is
being read without being set. In all these cases the compiler should generate a warning. These
and similar problems are usually addressed by a data-flow analysis phase carried out during
semantic analysis.



Using this algorithm we can only process one variable at a time. But the proposed mechanism
can be easily extended to a finite number of variables by adding new S’· · ·’ every time we dis-
cover a variable definition. Parsing of described SC grammar can be implemented by pushdown
automaton with finite number of pushdowns. The first pushdown is classic LL pushdown. The
second one is variable specific and every [id] holds its own.
Because original ZAP03 grammar is LL1 and using described algorithm wasn’t any rule added,
Kontext-ZAP03 grammar has unambiguous derivations.
An example can clear the idea. This program is well-formed according to ZAP03 grammar, but
it’s semantics is not correct and parsing it as Kontext-ZAP03 program should reveal this error.
int : a, b, c, d;
string : s;

begin
a = 1;
d = 15;
s = “foo”;
a = c;

end
Corresponding stack to variable b will be D what lead to the first warning and corresponding
stack to variable c will be DR what lead to another warning:
Variable b is defined but never used.
Variable c read but not set.

4 TYPE CHECKING

By using scattered-context grammars we can describe type set of language (INT, STR) and type
check rules (INT → INT, STR → STR) directly in grammar. Almost trivial language with type
check using 5 stacks can look like this:
(s)→ (program) (next)→ (program)
(program)→ (dcl) (type, ,)→ ([int], , INT )
(program)→ ([begin]command[end]) (type, ,)→ ([string], ,ST R)
(dcl)→ (type[:]dcl2) (command,D, , INT,)→
(dcl2,S, INT,)→ ([id] cmd command,D L, , INT, INT )

([id]id_list[; ]next,D, INT, INT ) (command,D, ,ST R,)→
(dcl2,S,ST R,)→ ([id] cmd command,D L, ,ST R,ST R)

([id]id_list[; ]next,D,ST R,ST R) (command)→ (ε)
(id_list)→ ([, ]id_list2) (cmd)→ ([=]stmt[; ])
(id_list2,S)→ ([id]id_list,D) (stmt,D)→ ([id],D R)
(id_list)→ (ε) (stmt, , , , INT )→ ([digit], , , ,)
(next)→ (dcl) (stmt, , , ,ST R)→ ([strval], , , ,)

Stacks at even positions are the variable specific stacks as mentioned in previous chapter. The
first stack is classic LL stack and the rest of stacks at odd positions are temporary used stacks
for additional information. Although the underlying context-free grammar is not LL grammar
because there are several identic rules (command → [id] cmd command), this grammar is un-
ambiguous.



Example of error program code can be
int : c;

begin
c = “foo”;

end

Because c = “foo” is not type correct (STR is assigned to INT) and parsing will fail.
(S, S, ε, ε, ε) ⇒∗ (DCL, S, ε, ε, ε) ⇒ (TYPE [:] DCL2, S, ε, ε, ε)

⇒([int] [:] DCL2, S, INT, ε, ε)⇒2 (DCL2, S, INT, ε, ε)⇒
⇒([id] ID_LIST [;] NEXT, D, INT, INT, ε)⇒∗

⇒∗ (COMMAND [end], D, INT, INT, ε)⇒
⇒ ([id] CMD COMMAND [end], DL, INT, INT, INT)⇒∗

⇒∗ (STMT [;] COMMAND [end], DL, INT, INT, INT)⇒
⇒ ([digit] [;] COMMAND [end], DL, INT, INT, INT)

Now parsing will fail because the input character is [strval] instead of [digit].

5 CONCLUSION

In this article we described some possibilities of Context-Sensitive languages and advantages of
parsing such languages. Injecting type rules directly into Context-Free grammar is one of this
advantages. Another usage of CS parsing techniques and languages can be found in [Rych–05].
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