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ABSTRACT

In order for a PID controller to be practically usable, its derivative action must be filtered. The
article discusses multiple ways how the derivative can be implemented in discrete variants of
the PID controller. Their respective advantages and pitfalls are compared. One of them, which
exhibits responses most similar to the continuous version and is usable in the widest range of
sampling periods, is then recommended.

1 INTRODUCTION

Step response of an idealised PID controller’s derivative part is the Dirac delta function. For
physical implementability an extra time constant is usually introduced, which functions as a fil-
ter. A nice side-effect of the derivative action’s filtering is suppresion of noise that would be
strongly amplified by the derivative otherwise. In discrete PSD controllers there is no prob-
lem with physical implementability, because a perfect difference does exist. Nevertheless the
filtration is used here too, to suppress noise.
A continuous PID controller with filtered derivative action has a transfer function (from [1]):
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where:
K . . . . proportional gain,
TI . . . . integral time constant,
TD . . . derivative time constant,
N . . . . derivative gain limit; usually N ∈< 3;20 >.

From now on we will concern ourselves only with the third summand which represents the
filtered derivative. As the derivative action’s transfer function we will consider the expression
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The corresponding step response hD(t) is a falling exponential impulse:
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The total area of this impulse isZ
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The Dirac delta from a non-filtered derivative has the same area. Clearly the filtering of the
derivative preserves its total reaction to a step change and it just smears the response into
a longer time horizon.

2 DISCRETE IMPLEMENTATIONS OF THE DERIVATIVE PART

There is more than one way how to get from the continuous implementation to a discrete one.
The discrete system never behaves exactly the same as the continuous one and there are several
approaches to discretise continuous systems. Each approach has its pros and cons. We will now
discuss some of them.

2.1 UNFILTERED FIRST-ORDER DIFFERENCE

The text-book implementation of a PSD controller has the derivative action in the form

FD(z) =
TD

T
(1− z−1). (5)

Its obvious deficiency is that it produces extreme action values with short sampling periods.
Therefore it is not usable in practice.

2.2 THE DISCRETE EQUIVALENT OF A CONTINUOUS SYSTEM

In [2] a discrete variant of the filtered derivative action is proposed. It is a discrete equivalent
of the continuous variant in that its step response exactly equals the response of the continous
system FD(s) in the sampling moments. The conversion is based on the idea that a zero-order
hold is connected to the continuous system. The equivalent Z-transfer is then
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By applying (6) on (2) we get
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2.3 REPLACING THE INTEGRATOR WITH A SUMMATOR

An alternative approach (also mentioned in [2]) comes from a modification of the continuous
modelling schematics into a discrete one by replacing the integrator with its discrete analogy –
the summator. The sampling interval has to be taken into account. The resulting model can be
described by the transfer function

FD(z) =
NTD(1− z−1)

TD +(NT −TD)z−1 . (8)

Good care must be taken when using this approach as the single pole of the transfer function is
stable only if NT

TD
< 2.

2.4 BACKWARD DIFFERENCES

Different discrete transfer functions can be derived by substituting similarly behaving discrete
operators for the Laplace operator s. Substitution by backward differences

s =
1− z−1

T
(9)

gives

FD(z) =
TDN

TD +NT
1− z−1

1− TD
TD+NT z−1

. (10)

It is prominently featured in [1] and is also recommended by [3].

2.5 TUSTIN’S APPROXIMATION

Tustin’s approximation

s =
2
T

1− z−1

1+ z−1 (11)

leads to
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2TD +NT
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1− 2TD−NT
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. (12)

This one too is presented in [1], which mentions its unpleasant property that its pole approaches
the point −1 for large values of T .

2.6 DERIVATIVE IMPULSE AREA INVARIANT

The proposed form of the discrete derivative action stems from the fact that the transfer function
of a discrete system can be obtained if we have described its requested step response h(k):

F(z) = (1− z−1)Z {h(k)} (13)

It is sufficient to specify the requirements on the step response’s shape. We’ll have two require-
ments which arise from the properties of the filtered continuous derivative’s response:

• The response shall have a maximum in step k = 0 after which it shall fall exponentially –
just like (3) does.



• The total area drawn by the response’s graph shall equal TD – exactly like it is in (4).

The first requirement is described easily:

hD(k) = hD(0)ak; a ∈ (0;1) (14)

The step response is a geometric progression with the quotient a. The response of the continuous
variant is falling with the time constant TD

N . For the discrete sequence the equivalent quotient is

a = e−
NT
TD . (15)

The response’s area is composed of many little rectangular areas. The second request is written
like this:
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Clearly it is an infinite geometric series, therefore:
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From here we’ll separate hD(0) and substitute into (14). The final form of the step response is:
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By application of (13) we get the sought transfer function of the discrete derivative action:
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3 DISCUSSION

Obviously there is an abundance of possible discrete derivative implementations. An engineer
facing the task of programming a PID control algorithm would have to choose one. It is the
purpose of this section to ease his decision by eliminating some of them from his consideration.
It will be shown that not all are universally applicable, especially when a wide range of operating
sampling periods is desired. An implementation will be recommended as the most universal and
predictable one.
Given the requirement of operation with any sampling period, the ‘integrator-by-summator re-
placement’ (8) can be discarded right away, because it is unstable for long sampling periods.
All other FD(z) variants are always stable.
Stability is not a sufficient condition though. Some variants exhibit stable but oscillating re-
sponses. This is the case with Tustin approximation. For this reason it cannot be generally
recommended.
Another failure mode is more subtle. It is demonstrated in Figure 1. It compares how each
variant amplifies noise which will always be present on sensors in real systems. The ‘discrete
equivalent’ is a notable disappointment here. Not only it amplifies noise more than other fil-
tering variants, it even fares worse than unfiltered difference on long sampling periods. There
remain only two generally usable variants: (10) and (19).
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Figure 1: Noise amplification with different discrete derivative action implementations

From a quick glance at Figure 1 it might seem that the backward differences replacement is
better than impulse area invariant method, because it amplifies noise less. However, it can be
easily shown that the transfer functions of these two methods are in fact equivalent. They only
differ in their respective interpretation of the gain limit N. In the mid-range of sampling periods,
the backward differences variant’s value of N has a significantly diminished weight. Therefore
it performs stronger filtering than would correspond to the original continuous representation.

4 CONCLUSION

Several variants of the derivative component of discrete PID controllers were examined and
compared. In the end only two of them proved sufficiently universal. A more detailed analysis
of the differences between the two final variants was done, but it is out of scope of this article.
Due to its best similarity with the continuous implementation, the ‘impulse area invariant’ can
be declared the best one available. It is noteworthy that exactly the same transfer function is
hinted in [1] in a table of coefficients under the name ‘ramp equivalence’. However, its authors
did not dwell upon the differences between the methods. Such a comparison together with an
original deduction of the method are the main contributions of this article.
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