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ABSTRACT 

This article describes implementation adaptive linear optimal controller (LQ) based on 

pseudo-space model into the PLC. Identification with artificial neural network is used. In the 

last part of article is shown comparison between adaptive self-tuning PSD controller and 

adaptive LQ controller.  

1 INTRODUCTION 

The idea of the adaptive controllers is to adapt parameters of control law according to changes 

of the controlled system. Many types of adaptive controllers are known. In this article the 

adaptive self-tuning LQ controller is described. Scheme of this controller is separated into the 

two main parts: identification and controller. In this work identification based on neural 

network approach is used and control algorithm is the linear quadratic optimal controller.  

 
Figure 1: Architecture of self-tuning LQ controller. 

2 ON-LINE IDENTIFICATION 

For identification of systems is very widely used algorithm recursive least square method 

(RLS).  Instead of RLS, the identification method based on neural network can be used. A 

very fast algorithm for training neural networks is the Levenberg Marquardt (LM) algorithm.  
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The main idea of on-line identification is that according to the measured input to the 

identified system u(t) and the corresponding system output y(t) we are able to find the vector 

of system parameters Ө.   

 
Figure 2: The principle of identification of system using neural network. 

 

For computing the identified system output we can use the linear ARX model 
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where  
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is the vector of measured inputs and outputs and 
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is the vector of estimated system parameters. 

As it was written for training of the neural network can be used the Levenberg–Marquardt 

method.  New vector of parameters is in each step given by next equation. 
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where J is Jacobian matrix in form 
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and ε is  the vector of errors between the output of the system and the output of the model for 

all training patterns. The parameter p is the number of training patterns and n is the number of 

estimated parameters. 
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3  LINEAR LQ CONTROLLER 

Quadratic performance can be defined by 
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where w(k) denotes desired value, y(k) system output and u(k) is action value. Parameter u0(k) 

is  signal equal to desired value, which is used for elimination of offset.  Next parameters qy 

(qu) denotes weights for output (action) value, k0 denotes the first step while the minimization 

is used and x
T
 (k)Qx(k) denotes the minimum at the last step k0+T. 

When we will work with the pseudo state matrix S = [Su,Sx,Sw,Su0] defined by 
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and when we use vector z
T
(k) = [x(k),w(k),u0(k)] and x

T 
= [u(k),x(k-1),w(k),u0(k)] = S(k)z(k-1) 

we can rewrite quadratic performance  to the more suitable form [1, 2] 
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Using nonstandard state-vector we can build universal quadratic performance. For example 

for standard penalization according to equation (6) is matrix Q defined as follows 
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The method for minimization quadratic performance (8) is known [1, 2]. In each step is 

solved next algorithm where H = S
T
QS: 

 

Step Equation Notes 

1. H* = Hxx – H
T

ux – H
-1

uuHux recursively solves lost function 

2. GDG
T
 LD-FIL decomposition 

3. )1()( 1   kxGGku uxuu  solves action value 

Table1: Iteration algorithm for solving LQ controller. 



  

4 REAL PROCESS CONTROL RESULTS 
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Figure 3: Real process control using LQ controller (qu =1, qy = 10). 
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Figure 4: Real process control using self-tuning PSD controller. 



  

 

Described LQ controller was implemented into the PLC B&R. As controlled system was used 

the laboratory model with the transfer function 
2)1)(110(

1
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ss
sF . In the figure 3 we can 

see real process response with described LQ control algorithm. Figure 4 shows real process 

response with the self-tuning PSD controller based on modified Ziegler Nichols method [2, 

4]. In both cases the identification based on neural network approach with the same setup and 

initial conditions was used. Sampling period was set to Ts = 1s.  

 

5 CONCLUSION 

It was described design of adaptive LQ controller that uses universal weight matrix. The 

universal weight matrix Q can be written in many forms to designer’s expectation. This 

algorithm solves one iteration in each step. It means that time for computing is short and this 

algorithm can be used for implementation in industrial controller. In the last two figures we 

can see comparison between LQ adaptive controller and self-tuning PSD controller. One can 

see that in term of  changes of action value LQ controller produces the better results.   
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