
IMPLEMENTATION OF PETRI NETS INTO PLC BY USING

PROGRAM SKETCHER

Luděk Chomát
Doctoral Degree Programee (1), FEEC BUT

E-mail: xchoma00@stud.feec.vutbr.cz

Supervised by: Petr Pivoňka
E-mail: pivonka@feec.vutbr.cz

ABSTRACT

Petri net is a graphic and mathematical tool for discrete and continuous system simulation

and analysis. It is mostly used in domain of sequential control. Network states are often in-

terconnected with inputs and outputs programmable logic controller that allows to control

the real technological process. This document describes how to implement Petri net into

the programmable logic controller. In this essay we introduce one of many available tools

used to create Petri nets.

1. INTRODUCTION

In this chapter we will deal with implementation of Petri nets into programmable logic

controller. Programmable logic controller is manufactured by company B&R but Petri net

can be implemented on any platform. The Petri net can be implemented into the PLC in

numeruous ways. We'll discuss one of them. Furthermore, special programme called

Sketcher used for creation of Petri net and for PLC implementation will be shown. The last

chapter deals with experimental verification of Petri net shown on an example. The Model

transfer variant was chosen for PLC implementation (see Figure 1). Another suitable Petri

net implementation is the Comparative model (shown at Figure 2).

1.1. TRANSFER MODEL

Model created on PC is transformed by an appropriate way into data structure that is trans-

ferred into the memory of programmable logic controller. After this, a command is sent to

activate the service program that is implemented into programmable logic controller. Then

this program performs Petri nets simulation autonomicaly. Because the simulation consists

in fact only of integer number vectors addition, it is easy to program it on programmable

logic controller .

Figure 1: Petri net implementation

1.2. COMPARATIVE MODEL

The comparative model serves for control and comparison of theoretical and real result.

The model is loaded both on programmable logic controller and on PC. Results are com-

pared in certain intervals. Thanks to this comparison, we can avoid some collapses that

could raise from a wrong controllers function.

Figure 2: Petri net implementation

2. SIMULATION CORE DESCRIPTION

To implement the simulation core it was chosen to apply possibility C (transfer model).

This model is created on PC using program Sketcher. This model is transformed in a data

structure that is transferred into programmable logic controller. Program Sketcher is a

graphic tool on PC which serves for creation of Petri nets. The most important component

of program Sketcher is the simulation core which processes Petri nets represented by a data

structure. The simulation core is also uploaded on target platform. Its purpose there is to

realize simulation of Petri net to its data from data structure. The flow diagram of simula-

tion core is described in my thesis [1]. Simulation core performs all calculations con-

cerned with Petri net simulation like placing tokens into places, starting P – timed, T –

timed and firing transitions.

Petri nets data structure is saved on PC into a file and this file is transferred e.g. using FTP

client on programmable logic controller. All information about Petri net are saved into a

file. There are shown basic information in table 1 that are contained in data structure (in

created file). In fact this data structure can be viewed as in a simple script in specialized

programming language for description of Petri nets.

Function Function description Example

AddPlace Create place in net AddPlace 1 &DO_01 -1 ;

AddToken Create token in place AddAva 1 0 500 1 ;

AddAva Create P-timed in place AddTrans 1 &DI_01 0 ;

AddTrans Create transition in net AddTrans 1 &DI_01 0 ;

AddFir Set under which condition can be transition fired AddFir 1 0 2 1000 1 ;

Connect Connect places and transitions Connect 1 1 1 0 ;

Table 1: List of Petri net scripting language functions

3. SKETCHER DEVELOPMENT ENVIRONMENT DESCRIPTION

This chapter deals with the simulation programme used to design Petri nets, its simulation

and visualization. Programme Sketcher is based on work [1]. Simulation programme was

created in MICROSOFT VISUAL C++ .NET 2003, where is also possible to use libraries

MFC [5]. This library helped us to create better visualization. I’m sure this will be re-

warded by every user.

3.1. PROGRAMME DESCRIPTION AND CONTROL

Main objects during the graphical user interface programming were transparency and con-

trols simplicity. To control the programme we can use main menu or to work faster there is

also variety of icons in „Control Panel“. Keyboard shortcuts are also suitable. Figure 3 de-

scribes Sketcher showing Petri Net designed to control traffic lights.(chapter 4)

3.2. PETRI NET POSSIBLE PROPERTIES IMPLEMENTED INTO PLC

Table 2 shows overview of all possible Petri nets implementations into programmable log-

ic controller. All nets are fully functional a simulation core is designed to be extended easi-

ly. Book [2] describes Petri net’s all possible features.

Property Autonomous Non-Autonomous Bounded Non-Bounded Safe

Realized YES YES YES YES YES

Property Non-Contact Live Inhibitor Generalized P-timed

Realized YES YES NO NO YES

Property T-timed Effective conflict Coloured PN

Realized YES YES YES

Table 2: Property Petri net in simulation core

1 – Main menu

2 – Control panel

3 – Application

workspace

4 – Status bar

Figure 3: Show programme for draft, simulation and visualization Petri net

3.3. POSSIBLE SKETCHER MODES

There are three modes of Petri net operations in the simulation programme. This is the Pe-

tri net design mode which enables the creation of any Petri net based on our specifications

using the design-desktop. Other modes are the Petri net simulation mode where one can

simulate the Petri net before it gets implemented into the target platform. Thanks to this

mode user can reveal errors before they appear in a real process. The last mode serves for

Petri net visualization. The Sketcher programme is connected to the target platform and

reads or writes the input/output values of the PLC in a certain interval. Read information is

displayed on the desktop and the user can fine-tune the programme according to the speci-

fications. (See Figure 4 – denoted area and transition are active PLC inputs/outputs).

Figure 4: Visualization Petri net with s inputs/outpusts PLC

4. EXAMPLE

This chapter describes the usage of cross-roads feed device using our Petri net scripting

language figure 5. Figure 6 describes example of Petri net and also its data structure (table

3), which is implemented into programmable automat. The main function is to operate

crossroad lights automatically.

Figure 5: Model cross-roads

AddPlace 1 DO_01 -1 ;
AddPlace 2 NULL -1 ;

AddPlace 3 NULL -1 ;

AddPlace 4 &DO_04 -1 ;
AddPlace 5 &DO_02 -1 ;

AddPlace 6 NULL -1 ;

AddPlace 7 &DO_08 -1 ;
AddPlace 8 NULL -1 ;

AddPlace 9 &DO_05 -1 ;

AddPlace 10 &DO_03 -1 ;
AddPlace 11 NULL -1 ;

AddPlace 12 &DO_07 -1 ;

AddPlace 13 &DO_06 -1 ;
AddPlace 14 NULL -1 ;

AddToken 1 0 1 ;
AddToken 7 0 1 ;

AddToken 13 0 1 ;

AddTrans 1 NULL 0 ;
AddTrans 2 NULL 0 ;

AddTrans 3 NULL 0 ;

AddTrans 4 NULL 0;
AddTrans 5 NULL 0 ;

AddTrans 6 NULL 0 ;

AddTrans 7 NULL 0 ;
AddTrans 8 NULL 0 ;

AddTrans 9 NULL 0 ;

AddTrans 10 NULL 0;

AddFir 1 0 2 200 1 ;

AddFir 2 0 2 200 1 ;
AddFir 3 0 1 200 1 ;

AddFir 4 0 1 200 1 ;

AddFir 5 0 1 200 1 ;
AddFir 6 0 1 0 0;

AddFir 7 0 1 200 1 ;

AddFir 8 0 1 200 1 ;
AddFir 9 0 1 300 1 ;

AddFir 10 0 1 300 1;

AddAva 1 0 0 0 ;

AddAva 2 0 0 0 ;

AddAva 3 0 0 0 ;
AddAva 4 0 0 0 ;

AddAva 5 0 0 0 ;

AddAva 6 0 0 0 ;
AddAva 7 0 0 0 ;

AddAva 8 0 0 0 ;

AddAva 9 0 0 0 ;
AddAva 10 0 0 0 ;

AddAva 11 0 0 0 ;

AddAva 12 0 0 0 ;
AddAva 13 0 0 0 ;

AddAva 14 0 0 0 ;

Connect -1 1 1 0 ;
Connect 1 1 3 0 ;

Connect -1 5 3 0 ;

Connect 1 5 1 0 ;
Connect 1 5 5 0 ;

Connect -1 10 5 0 ;

Connect 1 10 9 0 ;
Connect -1 5 9 0 ;

Connect -1 11 9 0 ;

Connect 1 11 1 0 ;
Connect -1 2 1 0 ;

Connect -1 4 2 0 ;

Connect 1 4 4 0 ;
Connect -1 9 4 0 ;

Connect 1 9 8 0 ;

Connect -1 13 8 0 ;

Connect 1 13 10 0 ;
Connect -1 14 10 0

;

Connect 1 14 2 0 ;
Connect 1 9 2 0 ;

Connect -1 9 10 0 ;

Connect -1 3 2 0 ;
Connect 1 2 4 0 ;

Connect 1 3 3 0 ;

Connect -1 12 6 0 ;
Connect 1 12 7 0 ;

Connect -1 7 7 0 ;

Connect 1 7 6 0 ;
Connect -1 6 1 0 ;

Connect 1 6 7 0 ;

Connect -1 8 2 0 ;
Connect 1 8 6 0 ;

Table 3: Script for cross-roads

Figure 6: Petri net for cross-roads

5. CONCLUSION

In this study we described how to implement Petri net into programmable logic controller.

One of the possible implementations is to create Petri net script on PC and import it into

PLC. The advantage of this possibility is that we can test and verify Petri net on PC before

its implementation on target platform. The next possible option is comparative model.

Thanks to this method we can monitor the Petri net and compare results. It is appropriate

for safety and reliability of created Petri net. Next step is introduction of a special program

Sketcher. Our goal is to find innovation property control algorithm.

ACKNOWLEDGEMENT:

The paper has been prepared as a part of the solution of Czech Science Foundation GAČR

project No. 102/06/1132 Soft Computing in Control and by the Czech Ministry of Educa-

tion in the frame of MSM MSM0021630529 Intelligent Systems in Automation.

REFERENCES

[1] CHOMÁT, L.: Petri nets in environment of programmable logic controller B&R,

Diploma thesis, VUT Brno, 2006

[2] ALLA, H.: Discrete, Continuous and Hybrid Petri Nets, France, 2005

[3] Automation Studio
TM

 Programming. B&R Automation, 2001

[4] IEC (International Electrotechnical Commission). IEC Standard 61131-3: Program-

mable controllers – Part 3, 1993.

[5] PROSISE, J.: Programming Windows with MFC, Computer Press Praha, 2000,

http://www.cpress.cz

http://www.cpress.cz/

