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ABSTRACT 

The paper deals with description of an example implementation of FTDT method for ultra-

sound field full wave simulation. Full wave simulations provide a vivid tool for studying 

both the spatial and temporal nature of an acoustic field. Presented solution is intended to 

be a part of software for ultrasound field modeling, currently in the state of development. 

As a model for the propagation of ultrasound, the Westervelt equation is used. Therefore, 

both linear and nonlinear propagation effects can be simulated. 

1. INTRODUCTION 

Numerical simulations are currently the best means of making predictions of nonlinear ul-

trasound propagation. One of the numerical techniques suitable for providing full-wave so-

lutions to the propagation problem is the finite-difference time-domain (FTDT) method. In 

this work, an implementation of FTDT into an application for ultrasound field modeling is 

described. 

2. MODEL WAVE EQUATION 

Soft tissue media are commonly modeled as thermoviscuous fluids. The Westervelt equa-

tion was chosen as a model equation for the propagation of ultrasound in a thermoviscous 

fluid. It is derived from the equation of fluid motion by keeping up to quadratic order terms 

[1]. The equation can be written in the following form: 
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where p is the acoustic pressure, ρ0 and c0 are the ambient density and ultrasound speed, δ 

is the diffusivity of ultrasound, 
A
B
2

1  is the coefficient of nonlinearity. B/A is the pa-

rameter of nonlinearity of the fluid.  

The first two terms in (1) describe linear lossless wave propagation. The third term de-

scribes the loss due to the viscosity and thermal conduction of the fluid. Finally, the nonli-

near distortion of the traveling wave due to finite-amplitude effects is described by the 

fourth term. 



3. USING THE FTDT METHOD 

FTDT method approximates the spatial and temporal partial derivatives with discrete dif-

ferences, which can be obtained from Taylor series expansions about each node of the 

computational grid. 

Let’s consider a grid with two spatial dimensions and uniform spacing of Δx and Δr, in-

dexed by (i, j). Temporal dimension has a uniform spacing of Δt and is indexed by n. 

Temporal derivatives present in the absorption and nonlinear terms can be calculated to 

second order accuracy, using backward-time differences as follows: 
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The spatial differences can be obtained using a fourth order accurate, centered differenc-

ing. The example for r-dimension is shown: 
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According to [3], this approach reduces the effects of numerical dispersion. Discussion on 

numerical stability and dispersion can be found in [2]. 

3.1. FTDT ALGORITHM IMPLEMENTATION IN MATLAB 

The FTDT algorithm was implemented and evaluated in MatLab environment. To achieve 

optimal application code, attention has to be paid to minimizing memory usage. The num-

ber of performed memory transfers should also be as low as possible. 

FTDT algorithm is often likely to be treated as a solution to a system of N equations. 

Let’s consider a spatial grid with dimensions of Nx by Nr, K is the number of recent time 

steps allocated in the memory for temporal derivatives calculations.  

In case of using traditional approach for solving a system of N equations in MatLab, 

(Nx.Nr.K) by (Nx.Nr.K) square matrix needs to be allocated in the memory for determinant 

computation, etc. This would result in a great memory consumption and slower speed of 

mathematic operations carried out with such a large matrix. 

A less memory consuming approach chosen in the presented application is based on direct 

calculation of spatial nodes based on transforming equations (2) and (3) into matrix ma-

thematics. In this case, only Nx by Nr matrix needs to be allocated for each of the recent K 

time steps. Additionally, advantages of optimized matrix operations supported by MatLab 

environment can be taken. 

Looking at the equations (2) and (3), it is obvious that six previously calculated grids need 

to be kept in the memory for correct computation of the current spatial grid. The newly 

calculated grid consequently replaces the oldest one in the circular buffer as seen in fig. 1, 

while the other grids shift one buffer position further. 
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Fig. 1: Circular buffer used for storing recently computed data 

To improve the speed of computation, no data physically rotate in the circular buffer. The 

effect of rotation is achieved only by reorganizing the indexes of the circular buffer ele-

ments. 

4. RESULTS 

A 1 MHz sinusoidal burst of 6 cycles modulated by a Gaussian envelope in time was used 

as the source signal in all the following simulation examples. 

Simulation in fig. 2 shows a reflection of the pulse at a boundary of two media with differ-

ent ultrasound propagation speeds c01 = 1600 ms
-1

 and c02 = 1300 ms
-1

. Initial pressure am-

plitude P0 = 100 kPa. Temporal dimension spacing Δt = 5 ns, spatial spacing Δr = 25 μm. 

Only linear propagation of ultrasound was modeled. The model in fig. 3 is an extension to 

the previous using a simulation in 2D environment. 

 

 

Fig. 2: Reflection of a pulse on a boundary of two media with different propagation speeds. 

Finally, propagation in a highly nonlinear media is simulated in fig. 4. Gradual accumula-

tion of the energy of the pulse into 2
nd

 and 3
rd

 order harmonics can be clearly seen.  



 

Fig. 3: Ultrasound propagation 2D model 

In the simulation in fig. 4, nonlinear propagation effects are highly exaggerated, the pur-

pose is to demonstrate model’s ability to handle nonlinearities. Coefficient of nonlinearity 

β is equal to 1000 in this case. In the real world, β value is several hundred times lower (for 

example approx. 5 in soft tissues). 

 

 

Fig. 4: Nonlinear distortion of pulses at different travel distances from the source (exagge-

rated for clearness). 

5. CONCLUSION 

Presented evaluations show that FDTD method is easily applicable for solving both linear 

and nonlinear ultrasound propagation problems. Designed algorithm is a part of a project 

which topic is study of nonlinear effects in diagnostic ultrasound applications. Future work 

will include extending the model into 3D. Calculation of heating effects due to higher or-

der harmonics absorption in biological tissues is also planned. 



Another future goal is to encapsulate the code in an user friendly software application, 

which will serve as an aid in study of nonlinear effects in diagnostic ultrasound propaga-

tion. 
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