
DYNAMIC DETECTION AND HEALING OF LOW
LEVEL DATA RACES

Zdeněk Letko
Master Degree Programme (2), FIT BUT

E-mail: xletko00@stud.fit.vutbr.cz

Supervised by: Tomáš Vojnar
E-mail: vojnar@fit.vutbr.cz

ABSTRACT

Data races are a common problem in concurrent programming. This article describes a tool
which is able to detect low level data races in Java programs and heal them – all at run-time.
This tool is build on top of IBM ConTest, a concurrency testing software. The tool uses a
modification of the Eraser algorithm to detect data races and implements two techniques of data
race healing.

1 INTRODUCTION

Data races are difficult to find using traditional testing approaches because a multi-threaded
program may execute differently from one run to another. This article considers only low level
data races. The traditional definition of a low level data race [3] is as follows: A data race occurs
when two concurrent threads access a shared variable and when at least one of the accesses is
a write and the threads use no explicit mechanism to prevent the accesses from being simul-
taneous. The Eraser algorithm [3] has been proposed to find races in C programs. Our race
detection and healing tool is designed for Java and is implemented on top of IBM ConTest [1].
Eraser algorithm was enriched with Java join synchronization [2] and two healing approaches
were implemented.

2 DYNAMIC LOCALIZATION OF DATA RACES

Dynamic error detection technologies are applied at the run-time of the program. Most of
them make use of instrumentation. An instrumentor is a tool that receives as its input the
original program and instruments it, at different locations, with additional statements. During
the execution of the program, the instructions embedded by the instrumentor are executed.

2.1 DYNAMIC RACE DETECTION ON TOP OF IBM CONTEST

Our race detector is built on top of IBM ConTest [1]. ConTest is a concurrency testing tool
for Java applications. It provides us with an instrumentator, a noise provider and listeners
architecture. The noise producer injects sleep and yield calls into specific places of the tested



code. Noise injection is a technique that forces different legal interleaving for each execution
of the test application. In a sense, it simulates the behaviour of various possible schedulers.
The listeners architecture allows the race detector to connect to ConTest and execute its code
at selected places of the instrumented application during the run. This way, the tool is able to
gather useful information and influence the execution. The combination of noise injection and
dynamic data race techniques rapidly increases data race detection efficiency.

2.2 ERASER AND ITS PROPOSED MODIFICATION

The Eraser algorithm [3] is based on the LockSet algorithm proposed to find low level data
races in lock-based multithreaded programs. These algorithms are based on the idea that every
shared variable must be protected with a lock. Our race detector modifies the Eraser algorithm
to work with Java implicit locks [2] and enriches it with threads join synchronization [2]. This
modification helps to significantly decrease the number of false alarms in a common environ-
ment.
The tool is also able to suggest which lock should be used by the thread causing a race because
if some threads use lock with some shared variable, then the same lock should be used by all
threads. This information is provided as a suggestion for the programmer to correct the code
and can be also used as an input for an automatic healing process.
Proposed algorithm works with states maintained for each shared variable described in the Fig-
ure 1.

Figure 1: State diagram of the proposed race detector.

The variable is in the Virgin state till the end of its initialization. It is then in the Exclusive
state as long as only one thread is accessing the variable. It goes to the Shared state when other
threads start to read the variable or to the Shared-Modified state if at least one thread writes
the variable.
Write changes the value of the variable and therefore introduce non-determinism of the vari-
able’s value at the time. This non-determinism can be avoided by using a lock. The algorithm
checks if a proper lock is used by all threads accessing the variable. If an improper or none
lock is used, race conditions are fulfilled and a race is possible. Whenever the Race state is
encountered, healing process is applied.



3 DATA RACE HEALING

When a race is detected, healing process can be performed. The key issue in low level data race
healing is forcing threads not to concurrently access a shared variable. For example, simple
incrementation x++; must be performed atomically. This is problem because in Java bytecode
this simple operation is represented by three instructions – load x, increment x, and
store x. If another thread changes the value of x in between these instructions, a data race
occurs and the variable might get to contain a wrong value. Two healing techniques has been
implemented.
The first healing technique indirectly affects scheduler. Before a possible atomicity violation the
active thread calls yield() which causes a thread switch. Next time the thread is scheduled,
it gets whole time window from the scheduler and can with higher probability do the operation
without an interruption. This can also be combined with setting of priorities of threads. This
approach can only lower the probability of the race to occur.
Additional external lock is the second technique which prove that healing will be successful.
Every time the variable is accessed, the threads must lock this lock. The nonatomic sections are
completely covered by this lock so lock is not released within the problematic part that should
be atomic. Problem of this technique is danger of deadlock.

4 CONCLUSIONS

This paper presents an integration of the Eraser algorithm with the IBM ConTest environment
producing a new tool for race detection in Java programs. The use of ConTest improves chances
of Eraser detecting a potential problem. The Eraser algorithm was optimized for use with Java
and ConTest reducing the number of false alarms.

ACKNOWLEDGEMENTS

I thank to other members of SHADOWS project team at FIT BUT and also to Rachel Tzoref
and Yarden Nir from IBM Research Center Israel. This work is partially supported by the
European Community under the Information Society Technologies (IST) programme of the 6th
FP for RTD – project SHADOWS contract IST-035157. The authors are solely responsible for
the content of this paper. It does not represent the opinion of the European Community, and
the European Community is not responsible for any use that might be made of data appearing
therein. This work is partially supported by the Czech Ministry of Education, Youth, and Sport
under the project Security-Oriented Research in Information Technology, contract CEZ MSM
0021630528.

REFERENCES

[1] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel Ur.
Framework for testing multi-threaded java programs. j-CCPE, 15(3–5):485–499, 2003.

[2] Brian Goetz and Tim Peierls. Java concurrency in practice. Addison-Wesley, 2006.

[3] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391–411, 1997.


