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ABSTRACT 

The paper deals with one problem of single channel queuing problems. It shows that 
single-channel queuing model without losses can be used to solve queuing problems. It is 
composed of the queue and service center and uses the FIFO system. The station performs the 
service for the first element which appears in line. 

1 INTRODUCTION 

In order to describe queuing problems through mathematical formulation, some 
assumptions are made by considering arrivals and service as patterned by known function. 
Equations representing the distribution of the time between arrivals are used with other 
equations depicting other features such as the distribution of the service time. The relationship 
existing between these equations is the matter studied in waiting line theory. Arrivals of 
people or entry requirements (events) are customarily Poisson distributed. The duration of the 
service provided by people is usually exponentially distributed. 

2 SINGLE-CHANNEL QUEUING PROBLEMS 

Single-station or single-channel queuing problem is the name applied on those problems 
in which only one unit (station) is delivering the service as illustrated in Fig. 1, where circles 
represent the arrival elements (events) and a square represents a station which contains an 
element being serviced. 

Fig. 1: Single-channel queuing problem 

2.1 POISSON ARRIVALS 

The Poisson is a discrete probability distribution and yields the number of arrivals in a 
given time. The exponential distribution is a continuous function and yields the distribution of 



  

the time intervals between arrivals. The Poisson distribution consider the behavior of arrivals 
as occurring at random and postulates the presence of a constant “λ” which is independent of 
the time. The constant λ represents the mean arrival rate or the number of arrivals per unit of 

time, and 
λ
1

 is the length of the time interval between two consecutive arrivals. The Poisson 

distribution is expressed by the following formula: 
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where the parameter λ is the probability of the arrival which occurs between the time t 
and t+∆t , and e is the base of the natural system of logarithms. The expected number of 
arrivals through the interval (0, T) is λT. We calculate the mean value µ of arrivals  
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The probability that per the interval (0,T) does not come any event is ( ) TeTP λ−=0  

The complementary situation is described as follows: ( ) ( ) T
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The difference in the last formula is the distribution function of the exponential 
distribution with the function density equal to Te λλ − , so the mathematical expression of the 

distribution function is then ( ) ( )
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The function F(T) has this sense: It is the probability that the time interval between two 
consecutive arrivals will be equal or less than the value of T.  We calculate the mean time 

between two arrivals.  ( ) ( ) [ ]
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2.2 EXPONENTIAL SERVICE TIMES 

When the servicing of a unit takes place between time  t  and  ∆ t  (for  ∆ t  sufficiently 
small) the service times are given by exponential distribution, while the service rates are 
given by the Poisson distribution. The parameter µ T indicates that µ is a constant of 
proportionality, which is independent of time, of the queue length, or of the features. Again, 
calling  k the number of potential services which can be performed in the interval (0, T ) ,the 

Poisson formula for the servicing rate is ( ) ( )
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The mean servicing rate which is the expected number of services performed in one unit 
of time) is indicated by  µ  when the servicing time is exponential. It can be found 
approximately by dividing the output (time) of the services delivered along the period T. by 
the portion of  T in which the services are really operating. The mean servicing time MST is 

the reciprocal of  µ, 
µ
1=MST  



  

2.3 SINGLE-CHANNEL QUEUING MODEL WITHOUT LOSSES (M/M/1) 

Customarily, the inputs, as well as the length of time required by the station to perform 
the requested work, are considered to arrive at random. The servicing rate is independent of 
the number of elements in line. The station performs the service for the first element which 
appears in line (FIFO System – First In, First Out). When the service is busy, the incoming 
element waits in line in order of arrival until the previous element leaves the channel at the 
end of its service. We suppose an infinite source of arrival elements. This system is often 
called the system of bulk service (SBS). It is composed of the queue and service center. 

We put a list of notations which will be useful in the next mathematical considerations: 

λ = mean arrival rate (number of arrivals per unit of time) 

µ = mean service rate (per channel) 

n = number of elements in SBS 

λ ∆ t = probability that a new element enters the SBS between t and t + ∆t time interval 

µ ∆ t = probability that an element has received service (completely finished) between  

t and t + ∆ t time interval 

1-λ ∆ t = probability of having no arrivals in  the interval (t, t + ∆ t )  

1-µ ∆ t = probability of having no elements serviced during  the interval (t, t + ∆ t ) 

Pn+1(t)  = probability of having n +1 elements in the SBS system at time t 

Pn-1(t)  = probability of having n - 1elements in the SBS system at time t 

Pn(t + ∆ t )  = probability of having n elements in the SBS system at time t 

Let us suppose n > 0. We calculate the probability  Pn ( t +  ∆ t )  

Pn(t + ∆ t )  = Pn(t) (1-λ ∆ t) (1-µ ∆ t) + Pn+1(t) (µ ∆ t) (1-λ ∆ t) + Pn-1(t) (λ ∆ t) (1-µ ∆ t) +  

                      +Pn(t) (λ ∆ t)
 (µ ∆ t)      for  n  > 0..                        ( 1 ) 

∆ t is a very small interval hence we can omit its  square i.e. we approximate it by zero. 
We receive under given supposed condition from ( 1 )  the following system of equations: 

Pn(t + ∆ t )  = Pn(t) +  (µ ∆ t)
 Pn+1(t)  +  (λ ∆ t)

 Pn+1(t) -  (( λ + µ ) ∆ t )
 Pn(t)                n> 0 

Pn(t + ∆ t )  - Pn(t)  =   (µ ∆ t)
 Pn+1(t)  +  (λ ∆ t)

 Pn+1(t) -  (( λ + µ ) ∆ t )
 Pn(t)               n> 0 

we divide the equation by  ∆ t  and hence  
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 = µ Pn+1(t)  +  λ Pn+1(t) -  ( λ + µ ) Pn(t)             ( 2 ) 

when  ∆ t approaches zero, the following differential equations can be stated: 
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Pd   
 =   µ Pn+1(t)  +  λ Pn+1(t) -  ( λ + µ ) Pn(t)                             ( 3 ) 

which expresses the relationship among the probabilities Pn  , Pn - 1  , Pn + 1  at the time  t  
and the mean arrival rate ( λ ) and the mean service rate ( µ ). 

The probability that no elements will be in the (SBS) is given by the equation ( 3 ). 
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Pd 0  =  - λ P0 ( t ) +  µ P1 ( t )                                                          ( 4 )  

We suppose that the system is working for an unbounded time interval and that it pass 
to the steady state-condition. In this moment Pn( t ), which are probabilities which were be 
dependent on time t they become independent according to time and thus   

t
n

d

Pd  = 0               for  n  = 0, 1, 2, 3, . . .                ( 5 ) 

Thus ( 3 ) and ( 4 ) are transformed on homogenous linear equations : 

0 = µ Pn+1+  λ Pn -1 - ( λ + µ ) Pn             n = 1, 2, 3, . . .                           ( 6 )  

0 = - λ P0 +  µ P1   ,                                                    ( 7 ) 

where  P1 , P2 , P3 ,  .  .  .  , Pn , .  .  .  are unknown values. We have from ( 7 ) 

P1 = 0P
µ
λ

 and after a rewriting of the equation ( 6 ) for  n = 1 we have  

0 = µ P2+  λ P0 -  ( λ + µ ) P1 

Hence µ P2 =  ( λ + µ ) P1  -  λ P0  

and after the substitution for  P0  we have : P2 =  
0
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hence using the induction we receive the common formula for the probability that the 
single-channel  system  contains together just  n  (in the queue – in the line and in the service 
center ) arrived elements (demands). 
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We denote the ratio 
µ
λ

 by ρ . We call it traffic intensity, which is the expected service 

per unit of time measured in erlangs (in honor of A.K.Erlang, who is considered the father of 

the queuing theory). For next we suppose that1<ρ . Now we use the fact that 1P
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which is the geometric progression with the quotient 1<ρ , hence  .
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We have for individual cases: ρ−=1P0        ( 9 )  
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n ρρ                                                                                  ( 10 ) 

The equation (10) expresses the probability of existence of waiting queue of the length  
n – 1 for  n > 0. (Note that this equation is valid, as already indicated, only when µλ < ). 



  

The average number of elements (events), both waiting in the queue and attended in 
service is: ( ) ( ) ( )
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after rearrangements we obtain 
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The infinite series is of exponential type. Hence we can apply the following rule: 
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But we need the value of S(ρ) which is the derivative of  the fraction 
ρ

ρ
−1

. 

The mean length (mQ) of the queue (of the waiting elements excluding the element 
under the service process is obtained from the definition of the mean value in theory of 
probability and we have:  
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The mean time between arrivals ( h ), where the arrivals are Poisson distributed, is 

obtained by reciprocating the mean arrival rate λ, hence .
1
λ

=h  

The average time of demurrage of the element in all the system, i.e. in queue and in 
service (WTS ) is expressed in terms of  λ  and µ as follows:  .
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The average waiting time of an element in queue (WTQ) is expressed in terms of λ and 
µ  as follows:
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3 CONCLUSIONS 

The former model admits the queues of arbitrary lengths. Equation (10) gives the 
probability that an element will not have to wait at all upon its arrival at the service station 
before going into one-channel service. A model with queues of arbitrary length is often called 
a model without losses. 
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