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ABSTRACT

The paper deals with one problem of single chaguneling problems. It shows that
single-channel queuing model without losses camudedl to solve queuing problems. It is
composed of the queue and service center and hisé3RO system. The station performs the
service for the first element which appears in.line

1 INTRODUCTION

In order to describe queuing problems through nmadtieal formulation, some
assumptions are made by considering arrivals andcseas patterned by known function.
Equations representing the distribution of the tibetween arrivals are used with other
equations depicting other features such as theldiibn of the service time. The relationship
existing between these equations is the mattenestud waiting line theory. Arrivals of
people or entry requirements (events) are custdyrRawisson distributed. The duration of the
service provided by people is usually exponentidibgributed.

2 SINGLE-CHANNEL QUEUING PROBLEMS

Single-station or single-channel queuing probletmésname applied on those problems
in which only one unit (station) is delivering teervice as illustrated in Fig. 1, where circles
represent the arrival elements (events) and a sgegresents a station which contains an
element being serviced.
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Fig. 1. Sngle-channel queuing problem

2.1 POISSON ARRIVALS

The Poisson is a discrete probability distributaord yields the number of arrivals in a
given time. The exponential distribution is a coatus function and yields the distribution of



the time intervals between arrivals. The Poissatridution consider the behavior of arrivals
as occurring at random and postulates the pres#reonstantX” which is independent of
the time. The constant represents the mean arrival rate or the numbarrofals per unit of

time, andl is the length of the time interval between two saxutive arrivals. The Poisson

distribution is expressed by the following formufaT) = @ e T It): ]% 200
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where the parameteris the probability of the arrival which occurs ween the time
andt+At , ande is the base of the natural system of logarithnee €xpected number of
arrivals through the interval (0, T)AS. We calculate the mean valpef arrivals
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By assigning the value 1 to the period Te: 1, we havep, = %e-* k-1 2, ...

AT

The probability that per the interval (0,T) doe$ comme any event iE’O(T) =3

The complementary situation is described as follows, (T)=> P (T)=1-¢""

The difference in the last formula is the distribat function of the exponential

distribution with the function density equal tbe™" , so the mathematical expression of the
0 T<0

distribution function is therF (T) = P(r < T) = .
1-e?*" T=0

The functionF(T) has this sense: It is the probability that tieetinterval between two
consecutive arrivals will be equal or less thantakie of T. We calculate the mean time

between two arrivals E(7,) = [TdF(T) = [TA €7 dT = —/]1 o] o= %
0

2.2 EXPONENTIAL SERVICE TIMES

When the servicing of a unit takes place betweme tt and At (for At sufficiently
small) the service times are given by exponentisiridution, while the service rates are
given by the Poisson distribution. The parametel indicates thaty is a constant of
proportionality, which is independent of time, bktqueue length, or of the features. Again,
calling kthe number of potential services which can beqgoeréd in the interval (OT) ,the

k=1 2,...
Poisson formula for the servicing ratepg(T) = () e’ L
k! 0<T <o

The mean servicing rate which is the expected numbsgervices performed in one unit
of time) is indicated by x when the servicing time is exponential. It can loend
approximately by dividing the output (time) of teervices delivered along the periddby
the portion of T in which the services are really operating. Themservicing timeMST is

the reciprocal ofy, MST = 1
U



2.3 SINGLE-CHANNEL QUEUING MODEL WITHOUT LOSSES (M/M/1)

Customarily, the inputs, as well as the lengthimitrequired by the station to perform
the requested work, are considered to arrive ata@n The servicing rate is independent of
the number of elements in line. The station per®the service for the first element which
appears in line (FIFO System — First In, First OMYhen the service is busy, the incoming
element waits in line in order of arrival until tipeevious element leaves the channel at the
end of its service. We suppose an infinite sourfcaraval elements. This system is often
called the system of bulk service (SBS). It is cosgal of the queue and service center.

We put a list of notations which will be usefultre next mathematical considerations:

A = mean arrival rate (number of arrivals per ufitime)

M = mean service rate (per channel)

n = number of elements in SBS

AAt = probability that a new element enters the SBS betwandt + At time interval

LAt = probability that an element has received sencoepletely finished) between
t andt + At time interval

1-AAt = probability of having no arrivals in the intehfg t + At)

1-uAt = probability of having no elements serviced dgrithe intervalt( t + At)

P.+1(t) = probability of havingh +1 elements in the SBS system at time

Pn1(t) = probability of having - 1elements in the SBS system at time

Pa(t + At) = probability of having elements in the SBS system at time

Let us suppose > 0. We calculate the probability, @ + At)

Pt + At) = Ry(t) (L-AAL) (1-uAt) + Pa(t) (AL) (1-AA1L) + Pra(t) (AATL) (1-uAt) +

+HR) (A AL (LAt forn >0.. (1)

At is a very small interval hence we can omit itsiasq i.e. we approximate it by zero.
We receive under given supposed condition fron) (the following system of equations:

Put +At) = Ry(t) + (uAt) Poea(t) + AAL) Prsa(t) - (A + ) At) Py(t) n>0
Pat +At) - By(t) = (A1) Poa(t) + AAL) Pasa(t) - (A + ) At)Py(t) n>0
we divide the equation bt and hence

P (t+At)-P,(t)

o S HPat) + APwa(®) - (A 1) Po(t) (2)
when At approaches zero, the following differential equasi can be stated:
dP,(t

a(t) = UPna(t) + APna(t) - (A + ) Po(t) (3)

which expresses the relationship among the prababiR, , B,.1 , R+ 1 at the timet
and the mean arrival rate\ () and the mean service ratg J.

The probability that no elements will be in the §Bs given by the equation ( 3).



980 = -APo(t) + Pi(1) (4)

We suppose that the system is working for an undedrime interval and that it pass
to the steady state-condition. In this momeg(ttP, which are probabilities which were be
dependent on timethey become independent according to time and thus

dP, =0 fom =0,1,2,3,... (5)
dt

Thus (3 ) and ( 4) are transformed on homogefhoear equations :

0=uPrat AP1-(A+ )P, n=1,2,3,... (6)
0=-APy+ ubP; . (7)
where R, R ,PR, . . . ,R,. . . are unknown values. We have from ( 7)

P = A P, and after a rewriting of the equation ( 6 ) fo= 1 we have
U

0=uPx+ APy~ (A+ )Py
HenceuP,= (A+u)P1- AP

2
and after the substitution fory Rve have : P= (i] P,
U

hence using the induction we receive the commomda for the probability that the
single-channel system contains together jusfin the queue — in the line and in the service
center ) arrived elements (demands).

Py = [AJ"pO (8)

U

We denote the ratie/‘— by p. We call it traffic intensity, which is the expedtservice
U

per unit of time measured in erlangs (in honor d{.&rlang, who is considered the father of

the queuing theory). For next we suppose ghal. Now we use the fact thi P, =1

n=0

and we substitutePy p = P, (1+ p+ p? + ...+ p" +...)=1

n=0

. =
hence p, = It o +1p2 T = {;p”}

which is the geometric progression with the qudtier< 1, hence nﬁ; p" = ﬁ

We have for individual case®,=1-p (9)
P=(1-p)0" n=123... (10)

The equation (10) expresses the probability ofterise of waiting queue of the length
n— 1 for n> 0. (Note that this equation is valid, as alresdlycated, only whem < u).



The average number of elements (events), bothngaiti the queue and attended in

H Ho © n n- 1
service 'S'm:ZnPn =S n(l-p)p"=@-p)p Y np "t =(1-p)p _= p_,
L a-p) 1-p

after rearrangements we obtajn= _#_ - A .
1-p u -4

The infinite series is of exponential type. Hena=aan apply the following rule:
s(p)do =S no"ldp . using this formula we receivg:s(p)dp =S o" = L
[ s(p)do 2 np"dp §:5(p)dp 2P =
But we need the value of §(which is the derivative of the fractioiqp_ .
- P
The mean length (§) of the queue (of the waiting elements excludihg element

under the service process is obtained from thentiefn of the mean value in theory of
probability and we have:

) o0 ) p2 1 A2
mQ:Z::l(n—l)Pn:Z::lnPn—Zan:m—(l—PO):m—pzl_p:#Iu_/] .

The mean time between arrivalh(), where the arrivals are Poisson distributed, is

obtained by reciprocating the mean arrival vgthenceh :/% :

The average time of demurrage of the element inhallsystem, i.e. in queue and in
service (WTS) is expressed in terms of andyas follows: g =M1 4 _ 1
A

Ap -2 u-i°

The average waiting time of an element in qUAAEQ) is expressed in terms dfand
p as followsyrg = Mo -1 1 A2 21 0

A Apwu -2 pu-2 u(l-p)

3 CONCLUSIONS

The former model admits the queues of arbitrarygtlesr Equation (10) gives the
probability that an element will not have to wattall upon its arrival at the service station
before going into one-channel service. A model witieues of arbitrary length is often called
a model without losses.
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