
LOCALISATION OF THE FINITE STATE CONTROL
IN THE IP CORES

Ing. Ján KUBEK, Doctoral Degree Programme (2)
Dept. of Computer Systems, FIT, BUT

E-mail: kubek@fit.vutbr.cz

Supervised by: Dr. Zdeněk Kotásek

ABSTRACT

This paper deals with methods of finite state machines (FSMs) localization in FSM-
based, softcore intellectual property (IP) cores. An approach based on compilation tech-
niques is presented. The main goal is to minimize test application time by offering a
alternative way to test the control part of the FSM in the core. The proposed method was
implemented using Savant VHDL compiler, experimental results are presented in the paper
together with the perspective of the future research.

1 INTRODUCTION

Continued advances in both the semiconductor technology and the design automation
tools are enabling engineers to design larger, more complex, integrated circuits. This,
coupled with competitive pressures to improve both the design productivity and the time
to market, are driving engineers toward new System on Chip (SoC) design methodologies
and the growing use of predesigned embedded (intellectual property; IP) cores within their
designs.

According to the level of abstraction IP cores can be divided into (1)softcores, which
are cores in behavioral notation, (2)firmcores, in the form of netlist or register transfer
level (RTL) and (3)hardcores, which are cores in the form of physical layout on the silicon
mask.

1.1 IEEE P1500 TEST WRAPPER

Every SoC core is surrounded by standardized core test wrapper. This wrapper pro-
vides mechanisms for core test data access and core test isolation. It allows controlling
core primary inputs and observing core primary outputs via the test access mechanism. It
is also capable of providing test isolation of the core. The test isolation allows a core to be
appropriately isolated when it or an adjacent core (or UDL) is tested, thus preventing any
damage to the system chip [1].



Standard test wrapper can work in one of these four modes;normal – wrapper is
transparent to the normal core input and output operations, the core works according to its
specification;internal test– wrapper cells disable the core’s normal mode I/O and enable
access for source and sink of test pattern data, core itself is tested,external test– wrap-
per cells assume their scan-mode configuration and provide testability for the surrounding
interconnection, and logic between cores,isolation – wrapper disables the core’s normal
mode, sets appropriate core’s inputs to fixed constraints, and sets the appropriate core’s
outputs to predetermined conditions.

2 FSM-BASED IP CORE

Consider IP core FSM-based or FSM-driven (i.e. it is a controller). After locating
the FSM in the behavioral notation of the core by finding its control structure, there is
a possibility to design a specific core test. This test could check the correctness of the
control part of the core (i.e. FSM’s transitions), data part of the core has to be tested by
other means. An extension of the standard test wrapper of the core by adding new states
to the wrapper and suggesting changes in the core, which could allow access from the
extended test wrapper to the control structure are needed for direct testing of the finite state
machine. These suggested changes can be created algorithmically. Location of the FSM
in softcore can done by compilation techniques, by a method which is independent on the
specific coding style of IP core author.

2.1 LOCATING THE FSM IN CORE

Proposed technique is useful only when the core contains FSM, thus containing el-
ements used as finite state control. This control has to have a central structure where the
state information is stored in the core. Finding out, where this structure is located is crucial
for the mentioned method to work.

FSM localization is not a new topic in this field of research. Some techniques for
FSM extracting have been proposed [2]. This work is focused on FSM extraction from
HDL model, but at the RT level, to improve functional verification, by converting the model
to a hierarchicalprocess-module(PM) graph. Typical FSM patterns are to be searched in
the PM graph afterwards. The authors claim that their technique is independent on HDL
coding style.

2.2 SEARCH METHOD

In the behavioral notation, central structure of the finite state control will be defined
as asignal (or moresignals) in the core architecture. States will be defined as a set of
possible values of those signals, e.g. noted astypes. Transitions between states can be then
encoded by conditional statements likeif andcasewith the central structure in the con-
dition (current state affects the behavior of the core and the next state will mostly depend
on the current state of the FSM), containing assigments to thesignalor signals of the next
state, which can of course be identical with current state.



2.3 SAVANT VHDL COMPILER

Currently used method of finite state control localization employs the capabilities of
Savant VHDL compiler [5].

By compiling the source file(s) the parse tree of the HDL code becomes available as
a result of lexical and syntax analysis. Using the plugin component to Savant allows to
traverse this parse tree, effectively analyzing the structure of the softcore.

2.4 SYNTAX TREE ANALYSIS

Two methods of syntax tree analysis, which came from my research, were evaluated.
Common part of both of them is that the entireentityand itsarchitectureis searched

in the syntax tree andport, signal, if, caseand assignment statements are analysed. Both
the methods have two attributes for each signal or port, which represents their hit rate as a
part of the finite state control.

First one is the hit rate of the signal or port to hold the current state of the finite state
control (CST value). The second one is the hit rate of the signal or port to hold the next
state of the finite state control (NST value).

It is clear, that if the coding style of the HDL is the one that uses only one structure
for current and next state of the FSM, then CST and NST value of this structure would be
the biggest among all other signals and ports.

The first analysis method, called1TR, keeps a list of all ports (primary inputs and
outputs) and signals. For eachif or casestatement with a signal or port in the condition,
one point is added to this signal or port CST value. For each assignment statement of a
port or signal, one point is added to this signal or port NST value.

The second analysis method, called2CA, stems from the1TR method, but the CST
value computation is slightly different. A port or signal CST is increased by one point for
eachif statement with this signal or port in the condition and by one point for eachwhen
statement within acasestatement with this signal or port in the condition.

More about analysis methods and their outcome is to be discussed later, in Sections
4 and 5.

3 CORE DESIGN MODIFICATION

Using standard methods to test FSMs, algorithms exist to create test patterns. These
test patterns are there to set the state of the automata and to identify the state in which the
FSM was [4]. The disadvantage of this method is, that if only one transition is to be tested,
possibly many cycles of the state-preset pattern have to be executed, then the requested
transition is to be made, followed by many cycles of the state-identification patterns. This
extends the time needed for testing.

For this generic testing method, location of the control structure is irrelevant, it works
with the FSM inputs and outputs only. Having the position of the control structure already
available, it is possible to design dedicated test patterns for testing of the FSM internal
control logic only.



With modifying the core by creating a shortcut from core primary inputs to the con-
trol structure of the FSM and from the control structure to the core primary outputs, the
state-preset sequence and the state-identification sequence can be shortened to only one
test cycle.

Sequent changes has to be arranged to the standard core test wrapper, which now has
to handle presetting and identifying of states as the part of core internal test – test of core’s
controller (or internal core’s FSM) logic.

3.1 STRUCTURE MODIFICATIONS

By connecting the core’s primary inputs and outpus with the control structure through
multiplexer controlled by modified test wrapper, time needed to set or identify the state of
control structure will be shortened to one cycle. Total time needed to test one transition of
the FSM will be cut to only three cycles then: (1) cycle to preset requested state of control
structure, (2) setting the appropriate inputs and executing the transition and (3) a cycle to
identify new state of the control structure.

Test wrapper needs to be extended to cope with new operations, presetting and iden-
tifying state of the control structure. They are calledset FSM stateandget FSM state.

Switching test wrapper to theset FSM stateallows requested state to be loaded to the
core through multiplexers defined in previous section. On the other hand, switching test
wrapper to theget FSM statemakes current state of the machine available on the primary
outputs of the core.

3.2 SOFTCORE MODIFICATION

Core itself needs to be modified in order to use new test method.
For presetting the value of status structure its input multiplexing is required, so a

regular function of the core is allowed when in normal mode, and presetting of the value
through the primary inputs is possible in theset FSM statemode.

The same operation needs to be applied by analogy for status structure output, pri-
mary outputs andget FSM statemode.

4 EXPERIMENTAL RESULTS

Seven different cores from different sources was selected for the experimental testing
of the proposed analysis methods. Cores marked with asterisk are not real-life cores, they
are synthetic cores created for testing purposes only. CoreTC02 is not a FSM-based core,
so it has no central structure (NAC stands fornot a controller). Results are summarized in
Table 1. First column is the name of the core, second the number of input/output ports and
core signals, third the proper location of the central part of the cores FSM. Fourth and fifth
column are the results of the core analysis methods.

As a result of this experiment, it is visible that the2CA analysis method is same or
better in the FSM detection than1TR (CST detection failures atSTMTandITTC cores).
However, there are still problems with detection of cores not containing any FSM (like core
TC02) and the success rate of CST or NST detection is actually not sufficient.



IP core
ports,
signals

CST/NST
1TR result
CST/NST

2CA result
CST/NST

outcome

TC01* 3, 1 S1/S1 S1/S1 S1/S1 analysis OK
TC02* 3, 4 NAC P1/S2 P1/S2 NAC detection problem
TC03* 3, 0 P3/P2 P1/P2 P1/P2 NST fail
STMT 5, 4 S1/S1 P3/P1 S1/P1 NST fail, 1TR CST fail
ATAC 11, 5 S1/S2 S3/S2 P3/S2 CST fail
BUSC 16, 7 S2/S3 S14/S3 S14/S3 CST fail
ITTC 17, 17 S1/S1 P1/S1 S1/S1 2CAOK, 1TR CST fail

Table 1: Experimental results

5 CONCLUSIONS

By examining analysis results, it becomes evident that the better analysis methods of
the syntax trees are needed, with better success rate and NAC core detection capabilities.
Different evaluation methods are under consideration, including oriented graph of signal
and port assignments.

For better detection statistics more cores have to be analysed, focusing on real-life
IP cores (controllers), which are currently used in SoC design. Even NAC cores are useful
for testing of the NAC detection. Next phase of research covers creation of algorithms,
extending test wrapper and modifying the core, described in Section 3.

ACKNOWLEDGEMENTS

This research was supported by the Czech Ministry of Education – FRVŠ grant No.
3198/2006/G1 and the Grant Agency of the Czech Republic under grant No. 102/04/0737
“Modern Methods of Digital Systems Synthesis”.

REFERENCES

[1] Marinissen, E., Goel, S., Lousberg, M.: Wrapper design for embedded core test, in
Proceedings of the International Test Conference ITC’00, IEEE, 2000

[2] Liu, C.-N. J., Jou, J.-Y.: An Automatic Controller Extractor for HDL Descriptions at
the RTL, IEEE Design and Test of Computers, vol. 17, no. 3, pp. 72–77, 2000

[3] Moundanos, D., Abraham, J., Hoskote, Y.: Abstraction Techniques for Validation Cov-
erage Analysis and Test Generation, IEEE Trans. Computers, 1998, pp. 2–14

[4] Yannakakis, M., Lee, D.: Testing finite state machines, ACM symposium on Theory
of computing, New Orleans, Louisiana, ACM Press, 1991, pp. 476–485

[5] Savant VHDL compiler project,
www.cliftonlabs.com/savantp.htm


