
A NOVEL HIGH PERFORMANCE APPROACH FOR
TECHNOLOGY COMPUTER AIDED DESIGN

René HEINZL, Doctoral Degree Programme (2)
Christian Doppler Laboratory at the IUE, TU Wien

E-mail: heinzl@iue.tuwien.ac.at

Michael SPEVAK, Doctoral Degree Programme (1)
Institue for Microelectronics, TU Wien

E-mail: spevak@iue.tuwien.ac.at

Philipp SCHWAHA, Doctoral Degree Programme (2)
Christian Doppler Laboratory at the IUE, TU Wien

E-mail: heinzl@iue.tuwien.ac.at

Supervised by: Prof. Tibor Grasser

ABSTRACT

A generic scientific simulation environment is presented which offers topological,
dimensional, and functional independence. Therewith complete mathematical formulas
and discretization schemes like finite volumes or finite elements can be expressed directly
in C++. The new approach as well as the applicability and the performance related to well
established simulators are highlighted.

1 INTRODUCTION
Semiconductor devices have become an ubiquitous commodityand users have come

to expect a constant increase of device performance. It is this quest for ever decreasing de-
vice dimensions and faster switching speeds that results inever growing requirements on
the employed simulation methodology. While computer performance is steadily increasing
the additional complexity of these simulation models easily outgrows this gain in compu-
tational power. It is therefore of utmost importance to employ the latest techniques of
software development to obtain high performance and thereby ensure adequate simulation
times even for complex problems. As a consequence the development of high performance
simulation software is quite challenging.

2 MOTIVATION
Different approaches [1, 2, 3] focus on topics like expression templates, high perfor-

mance matrix manipulation, geometrical algorithms, and finite element discretization. The
nature of dealing with partial differential equations (PDEs) with the inherent coupling of
topological traversion and functional description complicates the usage of these libraries.
During the last decades our institute has developed different applications to tackle these
issues like SAP [4], Minimos-NT [5].

An analysis reveals that so far no approach can successfullydeal with the mathemat-
ical formulation of physical phenomena within a programming language efficiently. As a
consequence we have extracted the most promising concepts from all of these approaches.
The result of this analysis is ageneric scientific simulation environment (GSSE). Concepts
from the Boost MPL [6] and Boost Phoenix [7] libraries have been used to optimize the
run-time performance of GSSE.

3 OUR APPROACH
To support arbitrary topological traversal mechanisms andfunctional description ca-

pabilities a layered concept structure has been developed (Figure 1). The lowest layer
represents the concepts for topological information and quantity storage. The second layer
provides the separation of traversion and quantity access which is called cursor and prop-
erty map concept. The functional layer decouples the underlying concepts from the top
layer and is based on the Boost Phoenix library [7]. It provides several facilities to support
different discretization schemes. To complete our environment abstract interfaces for (real-
time) visualization [8] and solver integration [9] as well as three dimensional unstructured
meshing [10] have been developed. To demonstrate the importance of a method that is
both easy and efficient a few examples are given using equations encountered in the field
of TCAD.

Figure 1: Conceptual view of GSSE with abstract interfaces.

3.1 LAPLACE EQUATION
The Laplace equation is used as a simple introduction. It is discretized by the finite

volume method and calculated on a bounded domainΩ (Figure 2). Discretized equations
can be specified without special treatment of the spatial dimension thereby optimizing
flexibility without incurrying any run-time penalty. The resulting problem is given by:

∑
edge

(

Ψ j −Ψi
)Ai j

di j
= 0 (1)

The next code snippets presents the corresponding C++ code.

f o r (v e r t e x _ c s vcs = (∗ s e g i t) . v e r t e x _ b e g i n () ;
vcs != (∗ s e g i t) . ve r tex_end () ; ++ vcs)

{
e q u a t i o n = (gsse : : sum< ver tex_edge >

[
gsse : : d i f f < edge_ver tex >[pot_quan]∗ A / d

]) (∗ vcs) ;
}

Ω
Γ1

Γ2

Γ3

Figure 2: Left: domainΩ with boundaries. Middle and right: potential distributionob-
tained from a two and three dimensional simulation run.

Different error estimation techniques [11] with automaticmesh adaptation steps are
available in GSSE and the results are shown in Figure 3. Thesetechniques are based on
an orthogonal approach for mesh refinement, which means thatdifferent error estimation
and mesh adaptation modules can be easily combined and of course integrated in other
software environments.

Figure 3: Left: resulting error norm before mesh refinement.Right: error norm after three
mesh adaption steps. The error values are distributed between 10, which means a high
local error norm and 0, which means a low local error norm.

3.2 BOLTZMANN’S EQUATION
Boltzmann’s equation for electron transport in semiconductors, as given in Equation

2, is the base for many calculations for device simulations.Here f is the distribution
function and~v the velocity of the charge carriers, while~F describes the force of an electric
field on these particles.

∂
∂t

f +~v ·gradr f +~F ·gradk f =
∂
∂t

f |collisions (2)

Due to the complexity of Boltzmann’s equation several techniques have been devel-
oped to obtain simplified models. One of these is the drift diffusion model [12], that can
be derived from Equation 2 by applying the method of moments.This results in current
relations of the following form shown in Equation 3.

~Jp = qpµpgradΨ−qDpgradp ~Jn = qnµngradΨ+qDngradn (3)

div (gradε Ψ) = −ρ (4)

Such non-linear equation systems [12] need to be solved selfconsistently with Poisson’s
equation, given in Equation 4 and discretized using the Scharfetter-Gummel scheme. Using
our functional formalism this non trivial problem can be implemented straightforwardly in
C++. The source code is given in the following code snippet.

/ / P o isson e q u a t i o n
e q u a t i o n _ p o t = (sum< ver tex_edge >
[

d i f f < edge_ver tex >[pot_quan]∗ a r e a / d i s t
] + (n − p + nA − nD) ∗ (vo l ∗ q / (eps0 ∗ e p s r))) (v e r t e x) ;
/ / C o n t i n u i t y e q u a t i o n f o r e l e c t r o n s
equa t ion_ n = (sum< ver tex_edge >
[

d i f f < edge_ver tex >(−n_quan∗Bern (d i f f < edge_ver tex >[pot_quan] / U_th) ,
−n_quan∗Bern (d i f f < edge_ver tex >[−pot_quan] / U_th))
∗ q ∗ mu_n ∗ U_th ∗ a r e a / d i s t

]) (v e r t e x) ;

To demonstrate that the proposed scheme is indeed operational we provide the po-
tential of a pn diode in Figure 4 at different stages of calculation. While the example has
been provided in two dimensions, the above implementation makes no assumptions about
the dimension of the problem and is suitable for any dimension.

Figure 4: Potential of a pn diode during different stages of the Newton iteration. From
initial (left) to the final result (right).

4 PERFORMANCE

Due to the use of meta programming [6] and its evaluation at compile time the calcu-
lation associated with the specified equations can be highlyoptimized by the compiler and
thereby ensures excellent run-time performance. The run-time behavior is analyzed with a
simple vector additionA f = A1+A2 +A3 with three operations in Figure 5 in relation to
Fortran 77 code. The first implementation is based on the standardvalarray datatype as
implemented by the GNU GCC. Secondly, we utilize the Blitz++[1] library, which intro-
duced high performance calculation directly in C++. Lastly, a naive C++ implementation
is used that creates two temporary objects, one for additionand one for assignment. For
vector lengths smaller than 104, cache hits reveal the full computation power of the CPU,
longer vectors show the limits imposed by memory bandwidth.Different computer archi-
tectures are compared (AMD64 and Apple G5). Investigationsof parallelization attempts
on multi-processor machines (G5) show that the inner loop ofthe finite element assem-
bly cannot be parallelized easily. On the one hand, the update mechanisms of the element
matrices can demand access to the same part of memory simultaneously, which could be
avoided by a different assembly scheme, e.g. node-based assembly. On the other hand, the
inner loops are compiled very efficiently and only bounded bymemory bandwidth.

10
2

10
3

10
4

10
5

Vector length

0

500

1000

1500

2000

2500

M
O

ps
/s

Valarray

Blitz++

F77

Naive C++

10
2

10
3

10
4

10
5

Vector length

0

500

1000

1500

2000

2500

M
O

ps
/s

Valarray

Blitz++

F77

Naive C++

Figure 5: Left (G5) and right (AMD64): different programming approaches on modern
architectures compared to hand-optimized Fortran 77 performance.

5 CONCLUSION
In summary, a generic environment was presented. To show theapplicability of our

approach the Laplace and drift-diffusion equations were implemented using the finite vol-
ume discretization scheme. Therewith we can show, that highly expressive code in C++ on
different computer architectures does not show any abstraction penalty and thus run-time
comparable to Fortran can be achieved by carefully designing the individual components.

REFERENCES

[1] Veldhuizen T. L., in Proc. of PEPM’99., pp. 13–18.
[2] Siek J., Lee L.-Q., and Lumsdaine A., The Boost Graph Library: User Guide and

Reference Manual (Addison-Wesley, 2002).
[3] Fabri A., CGAL- The Computational Geometry Algorithm Library, 2001,

citeseer.ist.psu.edu/fabri01cgal.html.
[4] Sabelka R. and Selberherr S. , Microelectronics Journal32 (2001),2: 163-171.
[5] MINIMOS-NT 2.1 User’s Guide,http://www.iue.tuwien.ac.at/software/minimos-nt.
[6] Abrahams D. and Gurtovoy A., C++ Template Metaprogramming: Concepts, Tools,

and Techniques from Boost and Beyond (C++ in Depth Series) (Addison-Wesley
Professional, 2004).

[7] Phoenix, http://spirit.sourceforge.net/.
[8] IBM Visualization Data Explorer, 3rd ed., IBM Corporation, Yorktown Heights, NY,

USA, 1993.
[9] Heroux M. A. et al., ACM Transactions on Mathematical Software , for TOMS spe-

cial issue on the ACTS Collection.
[10] Heinzl R. and Grasser T., in Proc. SISPAD (Tokyo, Japan,2005), pp. 211–214.
[11] Heinzl R., Spevak M., Schwaha P., and Grasser T., in PRIME 2005 (IEEE, Lausanne,

Switzerland, 2005), pp. 175–178.
[12] Selberherr S., Analysis and Simulation of Semiconductor Devices (Springer, Wien–

New York, 1984).

