

LANGUAGE OPERATIONS PERFORMED BY FINITE
TRANSDUCERS

Ing. Martin VÍTEK, Doctoral Degree Programme (3)
Dept. of Information Systems, FIT, BUT

E–mail: vitek@fit.vutbr.cz

Supervised by: Prof. Alexander Meduna

ABSTRACT

Stringology represents a modern part of the formal language theory, which deals with
strings, languages and operations on them. It introduces many new language operations,
which can be divided into two groups — insertion and deletion operations. Some of these
operations are described in [1]. This paper presents these operations and some their
properties. The main contribution of this paper are algorithms for construction of finite
transducers which translate input regular language by selected operation to output language.

1 INTRODUCTION

The language operations that change strings by shuffling or inserting some substrings
fulfill an important role in several modern computer science fields, ranging from
cryptography through various text algorithms and stringology to DNA computation.
Therefore, it comes as no surprise that the formal language theory has recently played a
special attention to their investigation (see [1]). The present paper introduces and discusses
some more operations of this kind. Specifically, it discusses operations sequential insertion,
parallel insertion, scattered sequential insertion, sequential deletion, parallel deletion and
scattered sequential deletion. For these operations there have been designed algorithms for
construction of finite transducers performing these operations on given languages.

2 NEW LANGUAGE OPERATIONS

2.1 SEQUENTIAL INSERTION

The result of sequential insertion of string v into string u is a set of strings u, which have
in any place inserted the string v. This operation can be generalized to sequential insertion on
languages. We obtain the result of sequential insertion of language L2 into language L1 by
sequentially inserting every string from L2 into every string in L1.

EXAMPLE:
u = cd, v = a
u ← v = {acd, cad, cda}

2.2 PARALLEL INSERTION

The parallel insertion of a language L2 into a string u is a set of strings obtained after
inserting strings from L2 between all symbols of u, before the first symbol and after the last
symbol of u. Parallel insertion of language L2 into language L1 is the union of sets obtained
after parallel inserting L2 into all strings from L1.

EXAMPLE:
L1 = {cd}, L2 = {a, b}
L1 ⇐ L2 = {acada, acadb, acbda, acbdb, bcada, bcadb, bcbda, bcbdb}

2.3 SCATTERED SEQUENTIAL INSERTION

Both previous operations have the same property that the inserted string iss inserted in
the compact way on one place. But we can also insert the string scattered, so not the whole
string but its separate symbols are sparsely inserted. The result of scattered sequential
insertion of string v into string u is string u having inserted all symbols of v on arbitrary places
respecting their order in v. Scattered sequential insertion of language L2 into language L1 is
the union of scattered sequential insertion of all strings from L2 into all strings from L1.

EXAMPLE:
L1 = {abb}, L2 = {cd}
L1 ←s L2 = {cdabb, cadbb, cabdb, cabbd, acdbb, acbdb, acbbd, abcdb, abcbd, abbcd}

2.4 SEQUENTIAL DELETION

The result of sequential deletion of string v from string u is a set of strings v, from
which we have extracted an arbitrary occurrence of the string u. Sequential deletion of
language L2 from language L1 is the union of sequential deletions of strings from language L2
from strings from language L1.

EXAMPLE:
L1 = {abababa, ab, ba2, aba}, L2 = {aba}
L1 → L2 = {baba, abba, abab, ε}
We obtain this result as union of the following sets:

abababa → aba = {baba, abba, abab}
ab → aba = Ø

ba2 → aba = Ø
aba → aba = {ε}

2.5 PARALLEL DELETION

Parallel deletion of language L2 from string u erases all the non–overlapping
occurrences of strings in L2 from u. No nonempty string from L2 can appear between any two
occurrences of strings from L2 to be erased. The result can still contain a string from L2 as the

result of catenation of the remaining pieces. Parallel deletion of language L2 from language L1
is obtained by parallel deletion of L2 from all strings in L1.

EXAMPLE:
L1 = {abababa, aababa, abaabaaba}, L2 = {aba}
L1 ⇒ L2 = {b, abba, aba, aab, ε}
We obtain this result as the union of the following sets:

abababa ⇒ {aba} = { b, abba}
aababa ⇒ {aba} = { aba, aab}

abaabaaba ⇒ {aba} = { ε}

2.6 SCATTERED SEQUENTIAL DELETION

Similarly as scattered sequential insertion we can define sequential deletion in a
scattered sense. We do not delete the whole substring v but all its individual symbols in their
order in v. Generalized to languages, the result is the union of scattered sequential deletion of
all strings from one language from strings of the second language.

EXAMPLE:
L1 = {anbncn | n ≥ 1}, L2 = {ab2c3}
L1 →s L2 = {an+2bn+1cn | n ≥ 0}

3 FINITE TRANSDUCERS

The main contribution of this paper are algorithms constructing finite transducers,
which can perform selected operation on strings from a given regular language and therefore
translate that language into another language, result of that operation. These algorithms accept
two finite automata as their inputs. The first automaton describes language which this
operation will be performed on. The second automaton represents regular language which will
be either inserted or deleted in a given way according to the selected operation. As the result
these algorithms produce the finite transducer translating the first language according to the
selected operation and the second language.

All following algorithms expect two deterministic finite automata:
M1 = (Q1, Σ, P1, s1, F1) accepting language L1, the language, which we will perform the
selected operation on, and M2 = (Q2, Σ, P2, s2, F2) accepting L2, the language which will be
either inserted to or deleted from L1 depending on the selected operation. The output is always
finite transducer M = (Q, Σ, P, s, F) translating L1 to (L1 operation L2).

3.1 COPYING TRANSDUCER

If we have finite automaton and want to make a copying transducer from it, we simply
change description of each transition in it. If the previous description was x, new description
will be x|x. These transducers simply accept the same language as the original automaton and
copy input to its output tape.

3.2 GENERATING TRANSDUCER

Making generating transducer from a given finite automaton is also simple. For each
transition we change its description x to ε|x. So this transducer doesn’t read any symbol from
its input tape but nondeterministically generates strings from the language described by
original automaton to its output tape.

3.3 DELETING TRANSDUCER

Deleting transducer only accepts strings from the input tape and doesn’t write to output
tape. Making a deleting transducer from a given finite automaton lies in changing the
descriptions of transitions. Each description in the form x we will substitute with x|ε.

3.4 EXAMPLES OF FINITE TRANSDUCERS

Fig. 1: Illustration of transducer for parallel deletion

[A, {1}] [B, {2, 1}]
a|a

A ε B C E F

D

c|c f|f

ε|ε ε|ε ε|ε ε|ε e|e

[A, 1] [B, 2] [C, 3] [E, 4]

ε|ε ε|ε

ε|ε [B, 1] [C, 5] ε|ε
b|ε

a|ε b|ε c|ε

d|d [B, {1}]

d|d

Fig. 2: Illustration of transducer for sequential insertion

Fig. 3: Illustration of transducer for parallel insertion

REFERENCES

[1] Kari, L.: On insertion and deletion in formal languages, Turku, Finland, 1991

[2] Meduna, A., Vítek, M.: New language operations in formal language theory, Schedae
Informaticae, vol. 13/2004, Kraków, Poland, ISSN 0860–0295

ε|ε

Automaton M1

Transducer M

Automaton M2

a

c

b d

e

a|a
ε|d

ε|ε

ε|e

ε|ε

ε|ε

b|b

c|c

ε|ε

ε|ε

ε|ε

ε|ε

Automaton M1

Automaton M2

a b

c

d

a|a b|b

ε|ε

ε|ε ε|ε

ε|c ε|d

ε|ε

ε|ε ε|ε

Transducer M

ε|ε

a|a b|b

